# Properties

 Label 2850.299 Modulus $2850$ Conductor $285$ Order $18$ Real no Primitive no Minimal no Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(2850, base_ring=CyclotomicField(18))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([9,9,7]))

pari: [g,chi] = znchar(Mod(299,2850))

## Basic properties

 Modulus: $$2850$$ Conductor: $$285$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$18$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{285}(14,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 2850.bo

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{9})$$ Fixed field: 18.18.210684481487848166847338548828125.1

## Values on generators

$$(1901,1027,1351)$$ → $$(-1,-1,e\left(\frac{7}{18}\right))$$

## Values

 $$-1$$ $$1$$ $$7$$ $$11$$ $$13$$ $$17$$ $$23$$ $$29$$ $$31$$ $$37$$ $$41$$ $$43$$ $$1$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{4}{9}\right)$$ $$e\left(\frac{8}{9}\right)$$ $$e\left(\frac{7}{9}\right)$$ $$e\left(\frac{1}{9}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$1$$ $$e\left(\frac{5}{9}\right)$$ $$e\left(\frac{13}{18}\right)$$
 value at e.g. 2