Properties

Label 2850.221
Modulus $2850$
Conductor $1425$
Order $30$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(2850, base_ring=CyclotomicField(30))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([15,18,25]))
 
pari: [g,chi] = znchar(Mod(221,2850))
 

Basic properties

Modulus: \(2850\)
Conductor: \(1425\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(30\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1425}(221,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2850.by

\(\chi_{2850}(221,\cdot)\) \(\chi_{2850}(521,\cdot)\) \(\chi_{2850}(791,\cdot)\) \(\chi_{2850}(1091,\cdot)\) \(\chi_{2850}(1361,\cdot)\) \(\chi_{2850}(1661,\cdot)\) \(\chi_{2850}(1931,\cdot)\) \(\chi_{2850}(2231,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{15})\)
Fixed field: 30.30.4744812473648663416783521971428868598483319374281563796103000640869140625.1

Values on generators

\((1901,1027,1351)\) → \((-1,e\left(\frac{3}{5}\right),e\left(\frac{5}{6}\right))\)

Values

\(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\(1\)\(1\)\(1\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{17}{30}\right)\)\(e\left(\frac{19}{30}\right)\)\(e\left(\frac{23}{30}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{1}{3}\right)\)
value at e.g. 2