Properties

Label 2850.199
Modulus $2850$
Conductor $95$
Order $18$
Real no
Primitive no
Minimal no
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(2850, base_ring=CyclotomicField(18))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,9,8]))
 
pari: [g,chi] = znchar(Mod(199,2850))
 

Basic properties

Modulus: \(2850\)
Conductor: \(95\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(18\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{95}(9,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2850.bl

\(\chi_{2850}(199,\cdot)\) \(\chi_{2850}(499,\cdot)\) \(\chi_{2850}(1099,\cdot)\) \(\chi_{2850}(1849,\cdot)\) \(\chi_{2850}(1999,\cdot)\) \(\chi_{2850}(2449,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.18.563362135874260093126953125.1

Values on generators

\((1901,1027,1351)\) → \((1,-1,e\left(\frac{4}{9}\right))\)

Values

\(-1\)\(1\)\(7\)\(11\)\(13\)\(17\)\(23\)\(29\)\(31\)\(37\)\(41\)\(43\)
\(1\)\(1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{13}{18}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{2}{3}\right)\)\(-1\)\(e\left(\frac{7}{9}\right)\)\(e\left(\frac{11}{18}\right)\)
value at e.g. 2