Properties

Label 285.v
Modulus $285$
Conductor $285$
Order $12$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(285, base_ring=CyclotomicField(12))
 
M = H._module
 
chi = DirichletCharacter(H, M([6,9,8]))
 
chi.galois_orbit()
 
[g,chi] = znchar(Mod(68,285))
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(285\)
Conductor: \(285\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(12\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{12})\)
Fixed field: 12.12.24181674720486328125.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(22\)
\(\chi_{285}(68,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(-i\) \(-i\) \(-1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{5}{12}\right)\)
\(\chi_{285}(83,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(-i\) \(-i\) \(-1\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{12}\right)\)
\(\chi_{285}(182,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(i\) \(i\) \(-1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{11}{12}\right)\)
\(\chi_{285}(197,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(i\) \(i\) \(-1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{12}\right)\)