Properties

Label 285.bi
Modulus $285$
Conductor $285$
Order $36$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(285, base_ring=CyclotomicField(36))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([18,9,20]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(17,285))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(285\)
Conductor: \(285\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.36.240152953708250935530977810544721792914847414233751595020294189453125.1

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(13\) \(14\) \(16\) \(17\) \(22\)
\(\chi_{285}(17,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{17}{36}\right)\)
\(\chi_{285}(23,\cdot)\) \(1\) \(1\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{7}{36}\right)\)
\(\chi_{285}(47,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{1}{36}\right)\)
\(\chi_{285}(62,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{29}{36}\right)\)
\(\chi_{285}(92,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{5}{36}\right)\)
\(\chi_{285}(137,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{36}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{25}{36}\right)\)
\(\chi_{285}(158,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{31}{36}\right)\)
\(\chi_{285}(188,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{11}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{35}{36}\right)\)
\(\chi_{285}(218,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{19}{36}\right)\)
\(\chi_{285}(233,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{11}{36}\right)\)
\(\chi_{285}(263,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{36}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{17}{36}\right)\) \(e\left(\frac{23}{36}\right)\)
\(\chi_{285}(272,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{11}{12}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{36}\right)\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{19}{36}\right)\) \(e\left(\frac{13}{36}\right)\)