Properties

Label 2800.1301
Modulus $2800$
Conductor $112$
Order $4$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2800, base_ring=CyclotomicField(4)) M = H._module chi = DirichletCharacter(H, M([0,1,0,2]))
 
Copy content pari:[g,chi] = znchar(Mod(1301,2800))
 

Basic properties

Modulus: \(2800\)
Conductor: \(112\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(4\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{112}(69,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2800.z

\(\chi_{2800}(1301,\cdot)\) \(\chi_{2800}(2701,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\mathbb{Q}(i)\)
Fixed field: 4.0.100352.5

Values on generators

\((351,2101,2577,801)\) → \((1,i,1,-1)\)

First values

\(a\) \(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\( \chi_{ 2800 }(1301, a) \) \(-1\)\(1\)\(i\)\(-1\)\(i\)\(i\)\(-1\)\(i\)\(-1\)\(-i\)\(-i\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2800 }(1301,a) \;\) at \(\;a = \) e.g. 2