Properties

Label 280.31
Modulus $280$
Conductor $28$
Order $6$
Real no
Primitive no
Minimal no
Parity even

Related objects

Learn more

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(280, base_ring=CyclotomicField(6))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([3,0,0,1]))
 
pari: [g,chi] = znchar(Mod(31,280))
 

Basic properties

Modulus: \(280\)
Conductor: \(28\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(6\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{28}(3,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 280.bc

\(\chi_{280}(31,\cdot)\) \(\chi_{280}(271,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\sqrt{-3}) \)
Fixed field: \(\Q(\zeta_{28})^+\)

Values on generators

\((71,141,57,241)\) → \((-1,1,1,e\left(\frac{1}{6}\right))\)

Values

\(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\(1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{6}\right)\)\(-1\)\(e\left(\frac{1}{6}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{5}{6}\right)\)\(1\)\(1\)\(e\left(\frac{2}{3}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 280 }(31,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 280 }(31,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 280 }(31,·),\chi_{ 280 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 280 }(31,·)) \;\) at \(\; a,b = \) e.g. 1,2