# Properties

 Label 280.19 Modulus $280$ Conductor $280$ Order $6$ Real no Primitive yes Minimal yes Parity even

# Related objects

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(280, base_ring=CyclotomicField(6))

M = H._module

chi = DirichletCharacter(H, M([3,3,3,5]))

pari: [g,chi] = znchar(Mod(19,280))

## Basic properties

 Modulus: $$280$$ Conductor: $$280$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$6$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 280.ba

sage: chi.galois_orbit()

order = charorder(g,chi)

[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\sqrt{-3})$$ Fixed field: 6.6.1075648000.1

## Values on generators

$$(71,141,57,241)$$ → $$(-1,-1,-1,e\left(\frac{5}{6}\right))$$

## First values

 $$a$$ $$-1$$ $$1$$ $$3$$ $$9$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$27$$ $$29$$ $$31$$ $$\chi_{ 280 }(19, a)$$ $$1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$
sage: chi.jacobi_sum(n)

$$\chi_{ 280 }(19,a) \;$$ at $$\;a =$$ e.g. 2

## Gauss sum

sage: chi.gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 280 }(19,·) )\;$$ at $$\;a =$$ e.g. 2

## Jacobi sum

sage: chi.jacobi_sum(n)

$$J(\chi_{ 280 }(19,·),\chi_{ 280 }(n,·)) \;$$ for $$\; n =$$ e.g. 1

## Kloosterman sum

sage: chi.kloosterman_sum(a,b)

$$K(a,b,\chi_{ 280 }(19,·)) \;$$ at $$\; a,b =$$ e.g. 1,2