Properties

Label 28.d
Modulus $28$
Conductor $28$
Order $2$
Real yes
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(28, base_ring=CyclotomicField(2)) M = H._module chi = DirichletCharacter(H, M([1,1])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(27,28)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Kronecker symbol representation

Copy content sage:kronecker_character(28)
 
Copy content pari:znchartokronecker(g,chi)
 

\(\displaystyle\left(\frac{28}{\bullet}\right)\)

Basic properties

Modulus: \(28\)
Conductor: \(28\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(2\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: yes
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{7}) \)

Characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(9\) \(11\) \(13\) \(15\) \(17\) \(19\) \(23\) \(25\)
\(\chi_{28}(27,\cdot)\) \(1\) \(1\) \(1\) \(-1\) \(1\) \(-1\) \(-1\) \(-1\) \(-1\) \(1\) \(-1\) \(1\)