Properties

Conductor 7
Order 3
Real No
Primitive No
Parity Even
Orbit Label 28.e

Related objects

Learn more about

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed
 
sage: H = DirichletGroup_conrey(28)
 
sage: chi = H[25]
 
pari: [g,chi] = znchar(Mod(25,28))
 

Basic properties

sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Conductor = 7
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Order = 3
Real = No
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization]
 
Primitive = No
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 
Parity = Even
Orbit label = 28.e
Orbit index = 5

Galois orbit

sage: chi.sage_character().galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

\(\chi_{28}(9,\cdot)\) \(\chi_{28}(25,\cdot)\)

Inducing primitive character

\(\chi_{7}(4,\cdot)\)

Values on generators

\((15,17)\) → \((1,e\left(\frac{2}{3}\right))\)

Values

-1135911131517192325
\(1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)
value at  e.g. 2

Related number fields

Field of values \(\Q(\zeta_{3})\)

Gauss sum

sage: chi.sage_character().gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 28 }(25,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{28}(25,\cdot)) = \sum_{r\in \Z/28\Z} \chi_{28}(25,r) e\left(\frac{r}{14}\right) = 4.4058132074+-2.9306671564i \)

Jacobi sum

sage: chi.sage_character().jacobi_sum(n)
 
\( J(\chi_{ 28 }(25,·),\chi_{ 28 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{28}(25,\cdot),\chi_{28}(1,\cdot)) = \sum_{r\in \Z/28\Z} \chi_{28}(25,r) \chi_{28}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 28 }(25,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{28}(25,·)) = \sum_{r \in \Z/28\Z} \chi_{28}(25,r) e\left(\frac{1 r + 2 r^{-1}}{28}\right) = 0.0 \)