sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(276, base_ring=CyclotomicField(22))
M = H._module
chi = DirichletCharacter(H, M([0,0,16]))
pari:[g,chi] = znchar(Mod(49,276))
\(\chi_{276}(13,\cdot)\)
\(\chi_{276}(25,\cdot)\)
\(\chi_{276}(49,\cdot)\)
\(\chi_{276}(73,\cdot)\)
\(\chi_{276}(85,\cdot)\)
\(\chi_{276}(121,\cdot)\)
\(\chi_{276}(133,\cdot)\)
\(\chi_{276}(169,\cdot)\)
\(\chi_{276}(193,\cdot)\)
\(\chi_{276}(265,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((139,185,97)\) → \((1,1,e\left(\frac{8}{11}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 276 }(49, a) \) |
\(1\) | \(1\) | \(e\left(\frac{8}{11}\right)\) | \(e\left(\frac{9}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) | \(e\left(\frac{2}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{10}{11}\right)\) | \(e\left(\frac{5}{11}\right)\) | \(e\left(\frac{1}{11}\right)\) | \(e\left(\frac{4}{11}\right)\) | \(e\left(\frac{6}{11}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)