Properties

Label 275.169
Modulus $275$
Conductor $275$
Order $10$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(275, base_ring=CyclotomicField(10)) M = H._module chi = DirichletCharacter(H, M([9,2]))
 
Copy content pari:[g,chi] = znchar(Mod(169,275))
 

Basic properties

Modulus: \(275\)
Conductor: \(275\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(10\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 275.bb

\(\chi_{275}(9,\cdot)\) \(\chi_{275}(169,\cdot)\) \(\chi_{275}(179,\cdot)\) \(\chi_{275}(214,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{5})\)
Fixed field: 10.10.163542847442626953125.3

Values on generators

\((177,101)\) → \((e\left(\frac{9}{10}\right),e\left(\frac{1}{5}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(6\)\(7\)\(8\)\(9\)\(12\)\(13\)\(14\)
\( \chi_{ 275 }(169, a) \) \(1\)\(1\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{1}{5}\right)\)\(1\)\(e\left(\frac{9}{10}\right)\)\(e\left(\frac{3}{10}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{1}{10}\right)\)\(e\left(\frac{3}{10}\right)\)\(1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 275 }(169,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 275 }(169,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 275 }(169,·),\chi_{ 275 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 275 }(169,·)) \;\) at \(\; a,b = \) e.g. 1,2