Properties

Label 2736.29
Modulus $2736$
Conductor $2736$
Order $36$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(2736, base_ring=CyclotomicField(36))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,27,6,34]))
 
pari: [g,chi] = znchar(Mod(29,2736))
 

Basic properties

Modulus: \(2736\)
Conductor: \(2736\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2736.gz

\(\chi_{2736}(29,\cdot)\) \(\chi_{2736}(317,\cdot)\) \(\chi_{2736}(725,\cdot)\) \(\chi_{2736}(869,\cdot)\) \(\chi_{2736}(965,\cdot)\) \(\chi_{2736}(1085,\cdot)\) \(\chi_{2736}(1397,\cdot)\) \(\chi_{2736}(1685,\cdot)\) \(\chi_{2736}(2093,\cdot)\) \(\chi_{2736}(2237,\cdot)\) \(\chi_{2736}(2333,\cdot)\) \(\chi_{2736}(2453,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.36.1106979957984580051751811127579726572670357439523131838827096361582468940533158389988438920881242112.1

Values on generators

\((1711,2053,1217,1009)\) → \((1,-i,e\left(\frac{1}{6}\right),e\left(\frac{17}{18}\right))\)

Values

\(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(35\)
\(1\)\(1\)\(e\left(\frac{25}{36}\right)\)\(e\left(\frac{5}{6}\right)\)\(i\)\(e\left(\frac{11}{36}\right)\)\(e\left(\frac{17}{18}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{7}{18}\right)\)\(e\left(\frac{17}{36}\right)\)\(-1\)\(e\left(\frac{19}{36}\right)\)
value at e.g. 2