# Properties

 Label 2736.131 Modulus $2736$ Conductor $2736$ Order $36$ Real no Primitive yes Minimal yes Parity even

# Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(2736, base_ring=CyclotomicField(36))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([18,27,30,20]))

pari: [g,chi] = znchar(Mod(131,2736))

## Basic properties

 Modulus: $$2736$$ Conductor: $$2736$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$36$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 2736.gq

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(1711,2053,1217,1009)$$ → $$(-1,-i,e\left(\frac{5}{6}\right),e\left(\frac{5}{9}\right))$$

## Values

 $$-1$$ $$1$$ $$5$$ $$7$$ $$11$$ $$13$$ $$17$$ $$23$$ $$25$$ $$29$$ $$31$$ $$35$$ $$1$$ $$1$$ $$e\left(\frac{29}{36}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-i$$ $$e\left(\frac{25}{36}\right)$$ $$e\left(\frac{1}{18}\right)$$ $$e\left(\frac{5}{18}\right)$$ $$e\left(\frac{11}{18}\right)$$ $$e\left(\frac{19}{36}\right)$$ $$-1$$ $$e\left(\frac{17}{36}\right)$$
 value at e.g. 2