Properties

Label 2736.131
Modulus $2736$
Conductor $2736$
Order $36$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(2736, base_ring=CyclotomicField(36))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([18,27,30,20]))
 
pari: [g,chi] = znchar(Mod(131,2736))
 

Basic properties

Modulus: \(2736\)
Conductor: \(2736\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(36\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2736.gq

\(\chi_{2736}(131,\cdot)\) \(\chi_{2736}(347,\cdot)\) \(\chi_{2736}(443,\cdot)\) \(\chi_{2736}(491,\cdot)\) \(\chi_{2736}(731,\cdot)\) \(\chi_{2736}(1163,\cdot)\) \(\chi_{2736}(1499,\cdot)\) \(\chi_{2736}(1715,\cdot)\) \(\chi_{2736}(1811,\cdot)\) \(\chi_{2736}(1859,\cdot)\) \(\chi_{2736}(2099,\cdot)\) \(\chi_{2736}(2531,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{36})\)
Fixed field: 36.36.3066426476411579090725238580553259204073012297848010633870073023774152189842544016588473465044992.2

Values on generators

\((1711,2053,1217,1009)\) → \((-1,-i,e\left(\frac{5}{6}\right),e\left(\frac{5}{9}\right))\)

Values

\(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(23\)\(25\)\(29\)\(31\)\(35\)
\(1\)\(1\)\(e\left(\frac{29}{36}\right)\)\(e\left(\frac{2}{3}\right)\)\(-i\)\(e\left(\frac{25}{36}\right)\)\(e\left(\frac{1}{18}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{11}{18}\right)\)\(e\left(\frac{19}{36}\right)\)\(-1\)\(e\left(\frac{17}{36}\right)\)
value at e.g. 2