# Properties

 Label 2736.121 Modulus $2736$ Conductor $1368$ Order $6$ Real no Primitive no Minimal no Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(2736, base_ring=CyclotomicField(6))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,3,2,2]))

pari: [g,chi] = znchar(Mod(121,2736))

## Basic properties

 Modulus: $$2736$$ Conductor: $$1368$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$6$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{1368}(805,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: no Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 2736.be

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\sqrt{-3})$$ Fixed field: 6.6.437778473472.1

## Values on generators

$$(1711,2053,1217,1009)$$ → $$(1,-1,e\left(\frac{1}{3}\right),e\left(\frac{1}{3}\right))$$

## Values

 $$-1$$ $$1$$ $$5$$ $$7$$ $$11$$ $$13$$ $$17$$ $$23$$ $$25$$ $$29$$ $$31$$ $$35$$ $$1$$ $$1$$ $$-1$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$-1$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{5}{6}\right)$$
 value at e.g. 2