sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(273, base_ring=CyclotomicField(12))
M = H._module
chi = DirichletCharacter(H, M([6,10,11]))
pari:[g,chi] = znchar(Mod(215,273))
| Modulus: | \(273\) | |
| Conductor: | \(273\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(12\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{273}(80,\cdot)\)
\(\chi_{273}(110,\cdot)\)
\(\chi_{273}(206,\cdot)\)
\(\chi_{273}(215,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((92,157,106)\) → \((-1,e\left(\frac{5}{6}\right),e\left(\frac{11}{12}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(4\) | \(5\) | \(8\) | \(10\) | \(11\) | \(16\) | \(17\) | \(19\) | \(20\) |
| \( \chi_{ 273 }(215, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{12}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(i\) | \(1\) | \(i\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{1}{6}\right)\) | \(-i\) | \(e\left(\frac{1}{12}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)