Properties

Modulus $2700$
Structure \(C_{2}\times C_{2}\times C_{180}\)
Order $720$

Learn more

Show commands: Pari/GP / SageMath

Copy content sage:H = DirichletGroup(2700)
 
Copy content pari:g = idealstar(,2700,2)
 

Character group

Copy content sage:G.order()
 
Copy content pari:g.no
 
Order = 720
Copy content sage:H.invariants()
 
Copy content pari:g.cyc
 
Structure = \(C_{2}\times C_{2}\times C_{180}\)
Copy content sage:H.gens()
 
Copy content pari:g.gen
 
Generators = $\chi_{2700}(1351,\cdot)$, $\chi_{2700}(1001,\cdot)$, $\chi_{2700}(2377,\cdot)$

First 32 of 720 characters

Each row describes a character. When available, the columns show the orbit label, order of the character, whether the character is primitive, and several values of the character.

Character Orbit Order Primitive \(-1\) \(1\) \(7\) \(11\) \(13\) \(17\) \(19\) \(23\) \(29\) \(31\) \(37\) \(41\)
\(\chi_{2700}(1,\cdot)\) 2700.a 1 no \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\) \(1\)
\(\chi_{2700}(7,\cdot)\) 2700.cb 36 no \(1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{1}{9}\right)\)
\(\chi_{2700}(11,\cdot)\) 2700.ck 90 yes \(1\) \(1\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{31}{45}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{43}{90}\right)\)
\(\chi_{2700}(13,\cdot)\) 2700.cr 180 no \(-1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{44}{45}\right)\) \(e\left(\frac{109}{180}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{61}{180}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{16}{45}\right)\)
\(\chi_{2700}(17,\cdot)\) 2700.cg 60 no \(1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{1}{60}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{23}{30}\right)\)
\(\chi_{2700}(19,\cdot)\) 2700.bt 30 no \(-1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{17}{30}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{14}{15}\right)\)
\(\chi_{2700}(23,\cdot)\) 2700.ct 180 yes \(-1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{61}{180}\right)\) \(e\left(\frac{19}{60}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{49}{180}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{53}{90}\right)\)
\(\chi_{2700}(29,\cdot)\) 2700.cp 90 no \(-1\) \(1\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{31}{90}\right)\)
\(\chi_{2700}(31,\cdot)\) 2700.co 90 yes \(-1\) \(1\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{11}{90}\right)\) \(e\left(\frac{41}{45}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{22}{45}\right)\)
\(\chi_{2700}(37,\cdot)\) 2700.ci 60 no \(-1\) \(1\) \(e\left(\frac{7}{12}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{17}{20}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{37}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{7}{15}\right)\)
\(\chi_{2700}(41,\cdot)\) 2700.cm 90 no \(-1\) \(1\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{77}{90}\right)\)
\(\chi_{2700}(43,\cdot)\) 2700.cb 36 no \(1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{12}\right)\) \(e\left(\frac{7}{9}\right)\)
\(\chi_{2700}(47,\cdot)\) 2700.ct 180 yes \(-1\) \(1\) \(e\left(\frac{35}{36}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{47}{180}\right)\) \(e\left(\frac{53}{60}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{23}{180}\right)\) \(e\left(\frac{4}{45}\right)\) \(e\left(\frac{7}{90}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{1}{90}\right)\)
\(\chi_{2700}(49,\cdot)\) 2700.bm 18 no \(1\) \(1\) \(e\left(\frac{17}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{13}{18}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{2}{9}\right)\)
\(\chi_{2700}(53,\cdot)\) 2700.bs 20 no \(1\) \(1\) \(-i\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{13}{20}\right)\) \(e\left(\frac{1}{20}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{7}{20}\right)\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{10}\right)\)
\(\chi_{2700}(59,\cdot)\) 2700.cn 90 yes \(1\) \(1\) \(e\left(\frac{4}{9}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{23}{90}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{59}{90}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{47}{90}\right)\)
\(\chi_{2700}(61,\cdot)\) 2700.ce 45 no \(1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{14}{45}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{26}{45}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{14}{45}\right)\)
\(\chi_{2700}(67,\cdot)\) 2700.cs 180 yes \(1\) \(1\) \(e\left(\frac{31}{36}\right)\) \(e\left(\frac{61}{90}\right)\) \(e\left(\frac{163}{180}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{97}{180}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{53}{90}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{7}{45}\right)\)
\(\chi_{2700}(71,\cdot)\) 2700.bz 30 no \(1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{14}{15}\right)\) \(e\left(\frac{1}{15}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{4}{15}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{17}{30}\right)\)
\(\chi_{2700}(73,\cdot)\) 2700.ci 60 no \(-1\) \(1\) \(e\left(\frac{5}{12}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{3}{20}\right)\) \(e\left(\frac{9}{10}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{19}{20}\right)\) \(e\left(\frac{8}{15}\right)\)
\(\chi_{2700}(77,\cdot)\) 2700.cq 180 no \(1\) \(1\) \(e\left(\frac{1}{36}\right)\) \(e\left(\frac{67}{90}\right)\) \(e\left(\frac{151}{180}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{49}{180}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{7}{60}\right)\) \(e\left(\frac{53}{90}\right)\)
\(\chi_{2700}(79,\cdot)\) 2700.cj 90 yes \(-1\) \(1\) \(e\left(\frac{8}{9}\right)\) \(e\left(\frac{29}{90}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{19}{30}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{32}{45}\right)\) \(e\left(\frac{34}{45}\right)\) \(e\left(\frac{37}{90}\right)\) \(e\left(\frac{7}{30}\right)\) \(e\left(\frac{38}{45}\right)\)
\(\chi_{2700}(83,\cdot)\) 2700.ct 180 yes \(-1\) \(1\) \(e\left(\frac{5}{36}\right)\) \(e\left(\frac{28}{45}\right)\) \(e\left(\frac{53}{180}\right)\) \(e\left(\frac{47}{60}\right)\) \(e\left(\frac{13}{15}\right)\) \(e\left(\frac{137}{180}\right)\) \(e\left(\frac{16}{45}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{41}{60}\right)\) \(e\left(\frac{49}{90}\right)\)
\(\chi_{2700}(89,\cdot)\) 2700.bw 30 no \(-1\) \(1\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{1}{30}\right)\)
\(\chi_{2700}(91,\cdot)\) 2700.bx 30 no \(-1\) \(1\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{30}\right)\) \(e\left(\frac{7}{15}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{11}{15}\right)\) \(e\left(\frac{23}{30}\right)\) \(e\left(\frac{4}{5}\right)\) \(e\left(\frac{7}{15}\right)\)
\(\chi_{2700}(97,\cdot)\) 2700.cr 180 no \(-1\) \(1\) \(e\left(\frac{29}{36}\right)\) \(e\left(\frac{22}{45}\right)\) \(e\left(\frac{167}{180}\right)\) \(e\left(\frac{23}{60}\right)\) \(e\left(\frac{29}{30}\right)\) \(e\left(\frac{143}{180}\right)\) \(e\left(\frac{83}{90}\right)\) \(e\left(\frac{11}{45}\right)\) \(e\left(\frac{59}{60}\right)\) \(e\left(\frac{8}{45}\right)\)
\(\chi_{2700}(101,\cdot)\) 2700.bl 18 no \(-1\) \(1\) \(e\left(\frac{2}{9}\right)\) \(e\left(\frac{1}{18}\right)\) \(e\left(\frac{1}{9}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{5}{18}\right)\) \(e\left(\frac{7}{18}\right)\) \(e\left(\frac{7}{9}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{11}{18}\right)\)
\(\chi_{2700}(103,\cdot)\) 2700.cs 180 yes \(1\) \(1\) \(e\left(\frac{25}{36}\right)\) \(e\left(\frac{19}{90}\right)\) \(e\left(\frac{157}{180}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{2}{15}\right)\) \(e\left(\frac{163}{180}\right)\) \(e\left(\frac{43}{90}\right)\) \(e\left(\frac{77}{90}\right)\) \(e\left(\frac{49}{60}\right)\) \(e\left(\frac{28}{45}\right)\)
\(\chi_{2700}(107,\cdot)\) 2700.m 4 no \(-1\) \(1\) \(-i\) \(1\) \(-i\) \(-i\) \(1\) \(-i\) \(1\) \(-1\) \(i\) \(-1\)
\(\chi_{2700}(109,\cdot)\) 2700.x 10 no \(1\) \(1\) \(-1\) \(e\left(\frac{1}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{7}{10}\right)\) \(e\left(\frac{2}{5}\right)\) \(e\left(\frac{3}{5}\right)\) \(e\left(\frac{3}{10}\right)\) \(e\left(\frac{4}{5}\right)\)
\(\chi_{2700}(113,\cdot)\) 2700.cq 180 no \(1\) \(1\) \(e\left(\frac{7}{36}\right)\) \(e\left(\frac{73}{90}\right)\) \(e\left(\frac{49}{180}\right)\) \(e\left(\frac{31}{60}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{91}{180}\right)\) \(e\left(\frac{8}{45}\right)\) \(e\left(\frac{7}{45}\right)\) \(e\left(\frac{13}{60}\right)\) \(e\left(\frac{47}{90}\right)\)
\(\chi_{2700}(119,\cdot)\) 2700.cn 90 yes \(1\) \(1\) \(e\left(\frac{5}{9}\right)\) \(e\left(\frac{13}{45}\right)\) \(e\left(\frac{79}{90}\right)\) \(e\left(\frac{8}{15}\right)\) \(e\left(\frac{11}{30}\right)\) \(e\left(\frac{31}{90}\right)\) \(e\left(\frac{47}{90}\right)\) \(e\left(\frac{13}{90}\right)\) \(e\left(\frac{13}{30}\right)\) \(e\left(\frac{79}{90}\right)\)
Click here to search among the remaining 688 characters.