sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2675, base_ring=CyclotomicField(530))
M = H._module
chi = DirichletCharacter(H, M([53,115]))
pari:[g,chi] = znchar(Mod(129,2675))
| Modulus: | \(2675\) | |
| Conductor: | \(2675\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(530\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2675}(54,\cdot)\)
\(\chi_{2675}(59,\cdot)\)
\(\chi_{2675}(84,\cdot)\)
\(\chi_{2675}(94,\cdot)\)
\(\chi_{2675}(104,\cdot)\)
\(\chi_{2675}(109,\cdot)\)
\(\chi_{2675}(114,\cdot)\)
\(\chi_{2675}(129,\cdot)\)
\(\chi_{2675}(139,\cdot)\)
\(\chi_{2675}(179,\cdot)\)
\(\chi_{2675}(184,\cdot)\)
\(\chi_{2675}(189,\cdot)\)
\(\chi_{2675}(204,\cdot)\)
\(\chi_{2675}(219,\cdot)\)
\(\chi_{2675}(229,\cdot)\)
\(\chi_{2675}(234,\cdot)\)
\(\chi_{2675}(259,\cdot)\)
\(\chi_{2675}(264,\cdot)\)
\(\chi_{2675}(269,\cdot)\)
\(\chi_{2675}(279,\cdot)\)
\(\chi_{2675}(284,\cdot)\)
\(\chi_{2675}(294,\cdot)\)
\(\chi_{2675}(309,\cdot)\)
\(\chi_{2675}(329,\cdot)\)
\(\chi_{2675}(339,\cdot)\)
\(\chi_{2675}(359,\cdot)\)
\(\chi_{2675}(364,\cdot)\)
\(\chi_{2675}(379,\cdot)\)
\(\chi_{2675}(384,\cdot)\)
\(\chi_{2675}(389,\cdot)\)
...
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1927,751)\) → \((e\left(\frac{1}{10}\right),e\left(\frac{23}{106}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(6\) | \(7\) | \(8\) | \(9\) | \(11\) | \(12\) | \(13\) |
| \( \chi_{ 2675 }(129, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{84}{265}\right)\) | \(e\left(\frac{471}{530}\right)\) | \(e\left(\frac{168}{265}\right)\) | \(e\left(\frac{109}{530}\right)\) | \(e\left(\frac{44}{53}\right)\) | \(e\left(\frac{252}{265}\right)\) | \(e\left(\frac{206}{265}\right)\) | \(e\left(\frac{99}{265}\right)\) | \(e\left(\frac{277}{530}\right)\) | \(e\left(\frac{497}{530}\right)\) |
sage:chi.jacobi_sum(n)