Properties

Label 2601.577
Modulus $2601$
Conductor $17$
Order $2$
Real yes
Primitive no
Minimal no
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(2601, base_ring=CyclotomicField(2))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,1]))
 
pari: [g,chi] = znchar(Mod(577,2601))
 

Basic properties

Modulus: \(2601\)
Conductor: \(17\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(2\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: yes
Primitive: no, induced from \(\chi_{17}(16,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2601.d

\(\chi_{2601}(577,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q\)
Fixed field: \(\Q(\sqrt{17}) \)

Values on generators

\((290,2026)\) → \((1,-1)\)

Values

\(-1\)\(1\)\(2\)\(4\)\(5\)\(7\)\(8\)\(10\)\(11\)\(13\)\(14\)\(16\)
\(1\)\(1\)\(1\)\(1\)\(-1\)\(-1\)\(1\)\(-1\)\(-1\)\(1\)\(-1\)\(1\)
value at e.g. 2