# Properties

 Conductor 260 Order 2 Real Yes Primitive Yes Parity Odd Orbit Label 260.g

# Related objects

Show commands for: SageMath / Pari/GP
sage: from dirichlet_conrey import DirichletGroup_conrey # requires nonstandard Sage package to be installed

sage: H = DirichletGroup_conrey(260)

sage: chi = H[259]

pari: [g,chi] = znchar(Mod(259,260))

## Kronecker symbol representation

sage: kronecker_character(-260)

pari: znchartokronecker(g,chi)

$$\displaystyle\left(\frac{-260}{\bullet}\right)$$

## Basic properties

 sage: chi.conductor()  pari: znconreyconductor(g,chi) Conductor = 260 sage: chi.multiplicative_order()  pari: charorder(g,chi) Order = 2 Real = Yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 \\ if not primitive returns [cond,factorization] Primitive = Yes sage: chi.is_odd()  pari: zncharisodd(g,chi) Parity = Odd Orbit label = 260.g Orbit index = 7

## Galois orbit

sage: chi.sage_character().galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Values on generators

$$(131,157,41)$$ → $$(-1,-1,-1)$$

## Values

 -1 1 3 7 9 11 17 19 21 23 27 29 $$-1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$-1$$ $$1$$ $$-1$$ $$1$$ $$1$$ $$1$$
value at  e.g. 2

## Related number fields

 Field of values $$\Q$$

## Gauss sum

sage: chi.sage_character().gauss_sum(a)

pari: znchargauss(g,chi,a)

$$\tau_{ a }( \chi_{ 260 }(259,·) )\;$$ at $$\;a =$$ e.g. 2
$$\displaystyle \tau_{2}(\chi_{260}(259,\cdot)) = \sum_{r\in \Z/260\Z} \chi_{260}(259,r) e\left(\frac{r}{130}\right) = -0.0$$

## Jacobi sum

sage: chi.sage_character().jacobi_sum(n)

$$J(\chi_{ 260 }(259,·),\chi_{ 260 }(n,·)) \;$$ for $$\; n =$$ e.g. 1
$$\displaystyle J(\chi_{260}(259,\cdot),\chi_{260}(1,\cdot)) = \sum_{r\in \Z/260\Z} \chi_{260}(259,r) \chi_{260}(1,1-r) = 0$$

## Kloosterman sum

sage: chi.sage_character().kloosterman_sum(a,b)

$$K(a,b,\chi_{ 260 }(259,·)) \;$$ at $$\; a,b =$$ e.g. 1,2
$$\displaystyle K(1,2,\chi_{260}(259,·)) = \sum_{r \in \Z/260\Z} \chi_{260}(259,r) e\left(\frac{1 r + 2 r^{-1}}{260}\right) = -0.0$$