Properties

Label 2583.554
Modulus $2583$
Conductor $369$
Order $60$
Real no
Primitive no
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2583, base_ring=CyclotomicField(60))
 
M = H._module
 
chi = DirichletCharacter(H, M([50,0,21]))
 
pari: [g,chi] = znchar(Mod(554,2583))
 

Basic properties

Modulus: \(2583\)
Conductor: \(369\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(60\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{369}(185,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2583.fj

\(\chi_{2583}(554,\cdot)\) \(\chi_{2583}(617,\cdot)\) \(\chi_{2583}(743,\cdot)\) \(\chi_{2583}(869,\cdot)\) \(\chi_{2583}(1058,\cdot)\) \(\chi_{2583}(1184,\cdot)\) \(\chi_{2583}(1310,\cdot)\) \(\chi_{2583}(1373,\cdot)\) \(\chi_{2583}(1415,\cdot)\) \(\chi_{2583}(1478,\cdot)\) \(\chi_{2583}(1604,\cdot)\) \(\chi_{2583}(1730,\cdot)\) \(\chi_{2583}(1919,\cdot)\) \(\chi_{2583}(2045,\cdot)\) \(\chi_{2583}(2171,\cdot)\) \(\chi_{2583}(2234,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{60})\)
Fixed field: Number field defined by a degree 60 polynomial

Values on generators

\((2297,2215,1072)\) → \((e\left(\frac{5}{6}\right),1,e\left(\frac{7}{20}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(4\)\(5\)\(8\)\(10\)\(11\)\(13\)\(16\)\(17\)\(19\)
\( \chi_{ 2583 }(554, a) \) \(-1\)\(1\)\(e\left(\frac{14}{15}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{13}{15}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{4}{5}\right)\)\(e\left(\frac{53}{60}\right)\)\(e\left(\frac{31}{60}\right)\)\(e\left(\frac{11}{15}\right)\)\(e\left(\frac{1}{20}\right)\)\(e\left(\frac{3}{20}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2583 }(554,a) \;\) at \(\;a = \) e.g. 2