Properties

Label 2535.bz
Modulus $2535$
Conductor $2535$
Order $52$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2535, base_ring=CyclotomicField(52)) M = H._module chi = DirichletCharacter(H, M([26,39,22])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(38,2535)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2535\)
Conductor: \(2535\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(52\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{52})$
Fixed field: Number field defined by a degree 52 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(14\) \(16\) \(17\) \(19\) \(22\)
\(\chi_{2535}(38,\cdot)\) \(1\) \(1\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{1}{52}\right)\) \(1\) \(-i\)
\(\chi_{2535}(77,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{15}{52}\right)\) \(1\) \(i\)
\(\chi_{2535}(233,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{52}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{45}{52}\right)\) \(1\) \(-i\)
\(\chi_{2535}(272,\cdot)\) \(1\) \(1\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{7}{52}\right)\) \(1\) \(i\)
\(\chi_{2535}(428,\cdot)\) \(1\) \(1\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{37}{52}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{37}{52}\right)\) \(1\) \(-i\)
\(\chi_{2535}(467,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{51}{52}\right)\) \(1\) \(i\)
\(\chi_{2535}(623,\cdot)\) \(1\) \(1\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{29}{52}\right)\) \(1\) \(-i\)
\(\chi_{2535}(662,\cdot)\) \(1\) \(1\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{43}{52}\right)\) \(1\) \(i\)
\(\chi_{2535}(818,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{52}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{21}{52}\right)\) \(1\) \(-i\)
\(\chi_{2535}(857,\cdot)\) \(1\) \(1\) \(e\left(\frac{29}{52}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{35}{52}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{35}{52}\right)\) \(1\) \(i\)
\(\chi_{2535}(1052,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{27}{52}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{27}{52}\right)\) \(1\) \(i\)
\(\chi_{2535}(1208,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{5}{52}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{5}{52}\right)\) \(1\) \(-i\)
\(\chi_{2535}(1247,\cdot)\) \(1\) \(1\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{19}{52}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{19}{52}\right)\) \(1\) \(i\)
\(\chi_{2535}(1403,\cdot)\) \(1\) \(1\) \(e\left(\frac{51}{52}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{49}{52}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{49}{52}\right)\) \(1\) \(-i\)
\(\chi_{2535}(1442,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{52}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{11}{52}\right)\) \(1\) \(i\)
\(\chi_{2535}(1598,\cdot)\) \(1\) \(1\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{41}{52}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{41}{52}\right)\) \(1\) \(-i\)
\(\chi_{2535}(1637,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{52}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{3}{52}\right)\) \(1\) \(i\)
\(\chi_{2535}(1793,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{52}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{33}{52}\right)\) \(1\) \(-i\)
\(\chi_{2535}(1832,\cdot)\) \(1\) \(1\) \(e\left(\frac{33}{52}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{47}{52}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{47}{52}\right)\) \(1\) \(i\)
\(\chi_{2535}(1988,\cdot)\) \(1\) \(1\) \(e\left(\frac{43}{52}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{25}{52}\right)\) \(1\) \(-i\)
\(\chi_{2535}(2183,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{17}{52}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{17}{52}\right)\) \(1\) \(-i\)
\(\chi_{2535}(2222,\cdot)\) \(1\) \(1\) \(e\left(\frac{45}{52}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{31}{52}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{31}{52}\right)\) \(1\) \(i\)
\(\chi_{2535}(2378,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{52}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{9}{52}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{9}{52}\right)\) \(1\) \(-i\)
\(\chi_{2535}(2417,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{52}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{23}{52}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{23}{52}\right)\) \(1\) \(i\)