Properties

Label 2535.bu
Modulus $2535$
Conductor $845$
Order $26$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2535, base_ring=CyclotomicField(26)) M = H._module chi = DirichletCharacter(H, M([0,13,4])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(79,2535)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2535\)
Conductor: \(845\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(26\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 845.x
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{13})\)
Fixed field: Number field defined by a degree 26 polynomial

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(7\) \(8\) \(11\) \(14\) \(16\) \(17\) \(19\) \(22\)
\(\chi_{2535}(79,\cdot)\) \(1\) \(1\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{25}{26}\right)\) \(1\) \(-1\)
\(\chi_{2535}(274,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{3}{26}\right)\) \(1\) \(-1\)
\(\chi_{2535}(469,\cdot)\) \(1\) \(1\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{7}{26}\right)\) \(1\) \(-1\)
\(\chi_{2535}(664,\cdot)\) \(1\) \(1\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{11}{26}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{11}{26}\right)\) \(1\) \(-1\)
\(\chi_{2535}(859,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{15}{26}\right)\) \(1\) \(-1\)
\(\chi_{2535}(1054,\cdot)\) \(1\) \(1\) \(e\left(\frac{15}{26}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{4}{13}\right)\) \(e\left(\frac{19}{26}\right)\) \(1\) \(-1\)
\(\chi_{2535}(1249,\cdot)\) \(1\) \(1\) \(e\left(\frac{25}{26}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{11}{13}\right)\) \(e\left(\frac{23}{26}\right)\) \(1\) \(-1\)
\(\chi_{2535}(1444,\cdot)\) \(1\) \(1\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{9}{13}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{1}{26}\right)\) \(e\left(\frac{2}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{1}{26}\right)\) \(1\) \(-1\)
\(\chi_{2535}(1639,\cdot)\) \(1\) \(1\) \(e\left(\frac{19}{26}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{5}{26}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{12}{13}\right)\) \(e\left(\frac{5}{26}\right)\) \(1\) \(-1\)
\(\chi_{2535}(1834,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{26}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{9}{26}\right)\) \(e\left(\frac{5}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{6}{13}\right)\) \(e\left(\frac{9}{26}\right)\) \(1\) \(-1\)
\(\chi_{2535}(2224,\cdot)\) \(1\) \(1\) \(e\left(\frac{23}{26}\right)\) \(e\left(\frac{10}{13}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{17}{26}\right)\) \(e\left(\frac{8}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{17}{26}\right)\) \(1\) \(-1\)
\(\chi_{2535}(2419,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{26}\right)\) \(e\left(\frac{7}{13}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{21}{26}\right)\) \(e\left(\frac{3}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{1}{13}\right)\) \(e\left(\frac{21}{26}\right)\) \(1\) \(-1\)