# Properties

 Label 2520.2179 Modulus $2520$ Conductor $280$ Order $6$ Real no Primitive no Minimal yes Parity odd

# Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(2520, base_ring=CyclotomicField(6))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([3,3,0,3,2]))

pari: [g,chi] = znchar(Mod(2179,2520))

## Basic properties

 Modulus: $$2520$$ Conductor: $$280$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$6$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from $$\chi_{280}(219,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: odd sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 2520.ef

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\sqrt{-3})$$ Fixed field: 6.0.153664000.1

## Values on generators

$$(631,1261,281,2017,1081)$$ → $$(-1,-1,1,-1,e\left(\frac{1}{3}\right))$$

## Values

 $$-1$$ $$1$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$29$$ $$31$$ $$37$$ $$41$$ $$43$$ $$-1$$ $$1$$ $$e\left(\frac{1}{3}\right)$$ $$1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$-1$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{2}{3}\right)$$ $$1$$ $$-1$$
sage: chi.jacobi_sum(n)

$$\chi_{ 2520 }(2179,a) \;$$ at $$\;a =$$ e.g. 2