Properties

Label 252.25
Modulus $252$
Conductor $63$
Order $3$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(252, base_ring=CyclotomicField(6))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,4,4]))
 
pari: [g,chi] = znchar(Mod(25,252))
 

Basic properties

Modulus: \(252\)
Conductor: \(63\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(3\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{63}(25,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 252.i

\(\chi_{252}(25,\cdot)\) \(\chi_{252}(121,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\sqrt{-3}) \)
Fixed field: 3.3.3969.1

Values on generators

\((127,29,73)\) → \((1,e\left(\frac{2}{3}\right),e\left(\frac{2}{3}\right))\)

Values

\(-1\)\(1\)\(5\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(37\)
\(1\)\(1\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{2}{3}\right)\)\(1\)\(e\left(\frac{1}{3}\right)\)
value at e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 252 }(25,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{252}(25,\cdot)) = \sum_{r\in \Z/252\Z} \chi_{252}(25,r) e\left(\frac{r}{126}\right) = -15.4273720813+3.7411483084i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 252 }(25,·),\chi_{ 252 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{252}(25,\cdot),\chi_{252}(1,\cdot)) = \sum_{r\in \Z/252\Z} \chi_{252}(25,r) \chi_{252}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 252 }(25,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{252}(25,·)) = \sum_{r \in \Z/252\Z} \chi_{252}(25,r) e\left(\frac{1 r + 2 r^{-1}}{252}\right) = -0.0 \)