Properties

 Label 2500.1 Modulus $2500$ Conductor $1$ Order $1$ Real yes Primitive no Minimal yes Parity even

Related objects

Show commands: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(2500, base_ring=CyclotomicField(2))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,0]))

pari: [g,chi] = znchar(Mod(1,2500))

Basic properties

 Modulus: $$2500$$ Conductor: $$1$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$1$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: yes Primitive: no, induced from $$\chi_{1}(1,\cdot)$$ sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

Galois orbit 2500.a

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

Related number fields

 Field of values: $$\Q$$ Fixed field: $$\Q$$

Values on generators

$$(1251,1877)$$ → $$(1,1)$$

Values

 $$a$$ $$-1$$ $$1$$ $$3$$ $$7$$ $$9$$ $$11$$ $$13$$ $$17$$ $$19$$ $$21$$ $$23$$ $$27$$ $$\chi_{ 2500 }(1, a)$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$ $$1$$
sage: chi.jacobi_sum(n)

$$\chi_{ 2500 }(1,a) \;$$ at $$\;a =$$ e.g. 2