Properties

Label 2496.ew
Modulus $2496$
Conductor $1248$
Order $24$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2496, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([0,9,12,22])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(137,2496)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2496\)
Conductor: \(1248\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from 1248.eg
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: 24.24.16904347199414056104328762948868038424314680688314698170368.1

Characters in Galois orbit

Character \(-1\) \(1\) \(5\) \(7\) \(11\) \(17\) \(19\) \(23\) \(25\) \(29\) \(31\) \(35\)
\(\chi_{2496}(137,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(i\) \(e\left(\frac{7}{24}\right)\) \(i\) \(e\left(\frac{23}{24}\right)\)
\(\chi_{2496}(665,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(e\left(\frac{5}{24}\right)\) \(-i\) \(e\left(\frac{13}{24}\right)\)
\(\chi_{2496}(713,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{8}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(i\) \(e\left(\frac{23}{24}\right)\) \(i\) \(e\left(\frac{7}{24}\right)\)
\(\chi_{2496}(1241,\cdot)\) \(1\) \(1\) \(e\left(\frac{3}{8}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{13}{24}\right)\) \(-i\) \(e\left(\frac{5}{24}\right)\)
\(\chi_{2496}(1385,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{7}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{17}{24}\right)\) \(e\left(\frac{11}{12}\right)\) \(i\) \(e\left(\frac{19}{24}\right)\) \(i\) \(e\left(\frac{11}{24}\right)\)
\(\chi_{2496}(1913,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{5}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{19}{24}\right)\) \(e\left(\frac{1}{12}\right)\) \(-i\) \(e\left(\frac{17}{24}\right)\) \(-i\) \(e\left(\frac{1}{24}\right)\)
\(\chi_{2496}(1961,\cdot)\) \(1\) \(1\) \(e\left(\frac{5}{8}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{23}{24}\right)\) \(e\left(\frac{1}{6}\right)\) \(e\left(\frac{1}{24}\right)\) \(e\left(\frac{7}{12}\right)\) \(i\) \(e\left(\frac{11}{24}\right)\) \(i\) \(e\left(\frac{19}{24}\right)\)
\(\chi_{2496}(2489,\cdot)\) \(1\) \(1\) \(e\left(\frac{7}{8}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{13}{24}\right)\) \(e\left(\frac{5}{6}\right)\) \(e\left(\frac{11}{24}\right)\) \(e\left(\frac{5}{12}\right)\) \(-i\) \(e\left(\frac{1}{24}\right)\) \(-i\) \(e\left(\frac{17}{24}\right)\)