Properties

Label 2496.503
Modulus $2496$
Conductor $1248$
Order $24$
Real no
Primitive no
Minimal no
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2496, base_ring=CyclotomicField(24)) M = H._module chi = DirichletCharacter(H, M([12,9,12,16]))
 
Copy content pari:[g,chi] = znchar(Mod(503,2496))
 

Basic properties

Modulus: \(2496\)
Conductor: \(1248\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(24\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1248}(35,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2496.en

\(\chi_{2496}(263,\cdot)\) \(\chi_{2496}(503,\cdot)\) \(\chi_{2496}(887,\cdot)\) \(\chi_{2496}(1127,\cdot)\) \(\chi_{2496}(1511,\cdot)\) \(\chi_{2496}(1751,\cdot)\) \(\chi_{2496}(2135,\cdot)\) \(\chi_{2496}(2375,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{24})\)
Fixed field: Number field defined by a degree 24 polynomial

Values on generators

\((703,1093,833,769)\) → \((-1,e\left(\frac{3}{8}\right),-1,e\left(\frac{2}{3}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 2496 }(503, a) \) \(1\)\(1\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{1}{3}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{11}{12}\right)\)\(-i\)\(e\left(\frac{7}{24}\right)\)\(-1\)\(e\left(\frac{11}{24}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2496 }(503,a) \;\) at \(\;a = \) e.g. 2