Properties

Label 2496.2003
Modulus $2496$
Conductor $192$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2496, base_ring=CyclotomicField(16)) M = H._module chi = DirichletCharacter(H, M([8,7,8,0]))
 
Copy content pari:[g,chi] = znchar(Mod(2003,2496))
 

Basic properties

Modulus: \(2496\)
Conductor: \(192\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(16\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{192}(83,\cdot)\)
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2496.ee

\(\chi_{2496}(131,\cdot)\) \(\chi_{2496}(443,\cdot)\) \(\chi_{2496}(755,\cdot)\) \(\chi_{2496}(1067,\cdot)\) \(\chi_{2496}(1379,\cdot)\) \(\chi_{2496}(1691,\cdot)\) \(\chi_{2496}(2003,\cdot)\) \(\chi_{2496}(2315,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.3965881151245791007623610368.1

Values on generators

\((703,1093,833,769)\) → \((-1,e\left(\frac{7}{16}\right),-1,1)\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 2496 }(2003, a) \) \(1\)\(1\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{3}{16}\right)\)\(-i\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{5}{16}\right)\)\(1\)\(e\left(\frac{13}{16}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2496 }(2003,a) \;\) at \(\;a = \) e.g. 2