Properties

Label 2496.179
Modulus $2496$
Conductor $2496$
Order $48$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: PariGP / SageMath
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(2496, base_ring=CyclotomicField(48))
 
M = H._module
 
chi = DirichletCharacter(H, M([24,45,24,40]))
 
pari: [g,chi] = znchar(Mod(179,2496))
 

Basic properties

Modulus: \(2496\)
Conductor: \(2496\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(48\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: yes
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2496.fa

\(\chi_{2496}(179,\cdot)\) \(\chi_{2496}(251,\cdot)\) \(\chi_{2496}(491,\cdot)\) \(\chi_{2496}(563,\cdot)\) \(\chi_{2496}(803,\cdot)\) \(\chi_{2496}(875,\cdot)\) \(\chi_{2496}(1115,\cdot)\) \(\chi_{2496}(1187,\cdot)\) \(\chi_{2496}(1427,\cdot)\) \(\chi_{2496}(1499,\cdot)\) \(\chi_{2496}(1739,\cdot)\) \(\chi_{2496}(1811,\cdot)\) \(\chi_{2496}(2051,\cdot)\) \(\chi_{2496}(2123,\cdot)\) \(\chi_{2496}(2363,\cdot)\) \(\chi_{2496}(2435,\cdot)\)

sage: chi.galois_orbit()
 
order = charorder(g,chi)
 
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((703,1093,833,769)\) → \((-1,e\left(\frac{15}{16}\right),-1,e\left(\frac{5}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 2496 }(179, a) \) \(1\)\(1\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{1}{24}\right)\)\(e\left(\frac{25}{48}\right)\)\(e\left(\frac{5}{12}\right)\)\(e\left(\frac{11}{48}\right)\)\(e\left(\frac{11}{24}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{7}{48}\right)\)\(-1\)\(e\left(\frac{47}{48}\right)\)
sage: chi.jacobi_sum(n)
 
\( \chi_{ 2496 }(179,a) \;\) at \(\;a = \) e.g. 2