Properties

Label 2496.1499
Modulus $2496$
Conductor $2496$
Order $48$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2496, base_ring=CyclotomicField(48)) M = H._module chi = DirichletCharacter(H, M([24,27,24,8]))
 
Copy content pari:[g,chi] = znchar(Mod(1499,2496))
 

Basic properties

Modulus: \(2496\)
Conductor: \(2496\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(48\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 2496.fa

\(\chi_{2496}(179,\cdot)\) \(\chi_{2496}(251,\cdot)\) \(\chi_{2496}(491,\cdot)\) \(\chi_{2496}(563,\cdot)\) \(\chi_{2496}(803,\cdot)\) \(\chi_{2496}(875,\cdot)\) \(\chi_{2496}(1115,\cdot)\) \(\chi_{2496}(1187,\cdot)\) \(\chi_{2496}(1427,\cdot)\) \(\chi_{2496}(1499,\cdot)\) \(\chi_{2496}(1739,\cdot)\) \(\chi_{2496}(1811,\cdot)\) \(\chi_{2496}(2051,\cdot)\) \(\chi_{2496}(2123,\cdot)\) \(\chi_{2496}(2363,\cdot)\) \(\chi_{2496}(2435,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{48})\)
Fixed field: Number field defined by a degree 48 polynomial

Values on generators

\((703,1093,833,769)\) → \((-1,e\left(\frac{9}{16}\right),-1,e\left(\frac{1}{6}\right))\)

First values

\(a\) \(-1\)\(1\)\(5\)\(7\)\(11\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)\(35\)
\( \chi_{ 2496 }(1499, a) \) \(1\)\(1\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{23}{24}\right)\)\(e\left(\frac{47}{48}\right)\)\(e\left(\frac{7}{12}\right)\)\(e\left(\frac{13}{48}\right)\)\(e\left(\frac{13}{24}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{17}{48}\right)\)\(-1\)\(e\left(\frac{25}{48}\right)\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 2496 }(1499,a) \;\) at \(\;a = \) e.g. 2