sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2496, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([0,0,2,3]))
pari:[g,chi] = znchar(Mod(1409,2496))
\(\chi_{2496}(1217,\cdot)\)
\(\chi_{2496}(1409,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((703,1093,833,769)\) → \((1,1,-1,-i)\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 2496 }(1409, a) \) |
\(1\) | \(1\) | \(i\) | \(i\) | \(-i\) | \(1\) | \(-i\) | \(1\) | \(-1\) | \(-1\) | \(-i\) | \(-1\) |
sage:chi.jacobi_sum(n)