sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2496, base_ring=CyclotomicField(48))
M = H._module
chi = DirichletCharacter(H, M([24,39,24,16]))
pari:[g,chi] = znchar(Mod(107,2496))
| Modulus: | \(2496\) | |
| Conductor: | \(2496\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(48\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2496}(35,\cdot)\)
\(\chi_{2496}(107,\cdot)\)
\(\chi_{2496}(347,\cdot)\)
\(\chi_{2496}(419,\cdot)\)
\(\chi_{2496}(659,\cdot)\)
\(\chi_{2496}(731,\cdot)\)
\(\chi_{2496}(971,\cdot)\)
\(\chi_{2496}(1043,\cdot)\)
\(\chi_{2496}(1283,\cdot)\)
\(\chi_{2496}(1355,\cdot)\)
\(\chi_{2496}(1595,\cdot)\)
\(\chi_{2496}(1667,\cdot)\)
\(\chi_{2496}(1907,\cdot)\)
\(\chi_{2496}(1979,\cdot)\)
\(\chi_{2496}(2219,\cdot)\)
\(\chi_{2496}(2291,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((703,1093,833,769)\) → \((-1,e\left(\frac{13}{16}\right),-1,e\left(\frac{1}{3}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(5\) | \(7\) | \(11\) | \(17\) | \(19\) | \(23\) | \(25\) | \(29\) | \(31\) | \(35\) |
| \( \chi_{ 2496 }(107, a) \) |
\(1\) | \(1\) | \(e\left(\frac{5}{16}\right)\) | \(e\left(\frac{7}{24}\right)\) | \(e\left(\frac{19}{48}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{41}{48}\right)\) | \(e\left(\frac{17}{24}\right)\) | \(e\left(\frac{5}{8}\right)\) | \(e\left(\frac{37}{48}\right)\) | \(1\) | \(e\left(\frac{29}{48}\right)\) |
sage:chi.jacobi_sum(n)