sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(247, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([33,22]))
pari:[g,chi] = znchar(Mod(72,247))
| Modulus: | \(247\) | |
| Conductor: | \(247\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | even |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{247}(2,\cdot)\)
\(\chi_{247}(32,\cdot)\)
\(\chi_{247}(41,\cdot)\)
\(\chi_{247}(72,\cdot)\)
\(\chi_{247}(110,\cdot)\)
\(\chi_{247}(124,\cdot)\)
\(\chi_{247}(128,\cdot)\)
\(\chi_{247}(154,\cdot)\)
\(\chi_{247}(162,\cdot)\)
\(\chi_{247}(193,\cdot)\)
\(\chi_{247}(223,\cdot)\)
\(\chi_{247}(241,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((210,40)\) → \((e\left(\frac{11}{12}\right),e\left(\frac{11}{18}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 247 }(72, a) \) |
\(1\) | \(1\) | \(e\left(\frac{19}{36}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{1}{18}\right)\) | \(e\left(\frac{1}{36}\right)\) | \(e\left(\frac{5}{36}\right)\) | \(-i\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(-i\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)