sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(247, base_ring=CyclotomicField(36))
M = H._module
chi = DirichletCharacter(H, M([27,32]))
pari:[g,chi] = znchar(Mod(5,247))
| Modulus: | \(247\) | |
| Conductor: | \(247\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
| Order: | \(36\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
| Real: | no |
| Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
| Minimal: | yes |
| Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{247}(5,\cdot)\)
\(\chi_{247}(44,\cdot)\)
\(\chi_{247}(47,\cdot)\)
\(\chi_{247}(73,\cdot)\)
\(\chi_{247}(99,\cdot)\)
\(\chi_{247}(112,\cdot)\)
\(\chi_{247}(138,\cdot)\)
\(\chi_{247}(161,\cdot)\)
\(\chi_{247}(177,\cdot)\)
\(\chi_{247}(187,\cdot)\)
\(\chi_{247}(213,\cdot)\)
\(\chi_{247}(226,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((210,40)\) → \((-i,e\left(\frac{8}{9}\right))\)
| \(a\) |
\(-1\) | \(1\) | \(2\) | \(3\) | \(4\) | \(5\) | \(6\) | \(7\) | \(8\) | \(9\) | \(10\) | \(11\) |
| \( \chi_{ 247 }(5, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{23}{36}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{5}{18}\right)\) | \(e\left(\frac{35}{36}\right)\) | \(e\left(\frac{7}{36}\right)\) | \(e\left(\frac{7}{12}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{9}\right)\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{11}{12}\right)\) |
sage:chi.jacobi_sum(n)
sage:chi.gauss_sum(a)
pari:znchargauss(g,chi,a)
sage:chi.jacobi_sum(n)
sage:chi.kloosterman_sum(a,b)