Properties

Label 247.4
Modulus $247$
Conductor $247$
Order $18$
Real no
Primitive yes
Minimal yes
Parity even

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(247, base_ring=CyclotomicField(18)) M = H._module chi = DirichletCharacter(H, M([3,2]))
 
Copy content pari:[g,chi] = znchar(Mod(4,247))
 

Basic properties

Modulus: \(247\)
Conductor: \(247\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(18\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Galois orbit 247.bi

\(\chi_{247}(4,\cdot)\) \(\chi_{247}(36,\cdot)\) \(\chi_{247}(62,\cdot)\) \(\chi_{247}(82,\cdot)\) \(\chi_{247}(199,\cdot)\) \(\chi_{247}(244,\cdot)\)

Copy content sage:chi.galois_orbit()
 
Copy content pari:order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{9})\)
Fixed field: 18.18.14764131335705363220772577074849224517.1

Values on generators

\((210,40)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{1}{9}\right))\)

First values

\(a\) \(-1\)\(1\)\(2\)\(3\)\(4\)\(5\)\(6\)\(7\)\(8\)\(9\)\(10\)\(11\)
\( \chi_{ 247 }(4, a) \) \(1\)\(1\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{1}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(e\left(\frac{5}{18}\right)\)\(e\left(\frac{7}{18}\right)\)\(-1\)\(e\left(\frac{5}{6}\right)\)\(e\left(\frac{2}{9}\right)\)\(e\left(\frac{5}{9}\right)\)\(-1\)
Copy content sage:chi.jacobi_sum(n)
 
\( \chi_{ 247 }(4,a) \;\) at \(\;a = \) e.g. 2

Gauss sum

Copy content sage:chi.gauss_sum(a)
 
Copy content pari:znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 247 }(4,·) )\;\) at \(\;a = \) e.g. 2

Jacobi sum

Copy content sage:chi.jacobi_sum(n)
 
\( J(\chi_{ 247 }(4,·),\chi_{ 247 }(n,·)) \;\) for \( \; n = \) e.g. 1

Kloosterman sum

Copy content sage:chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 247 }(4,·)) \;\) at \(\; a,b = \) e.g. 1,2