sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2400, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([1,1,1,0]))
pari:[g,chi] = znchar(Mod(2351,2400))
\(\chi_{2400}(2351,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1951,901,1601,577)\) → \((-1,-1,-1,1)\)
| \(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) |
| \( \chi_{ 2400 }(2351, a) \) |
\(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(-1\) | \(-1\) |
sage:chi.jacobi_sum(n)