Properties

Label 232.111
Modulus $232$
Conductor $116$
Order $14$
Real no
Primitive no
Minimal no
Parity odd

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(232, base_ring=CyclotomicField(14))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([7,0,4]))
 
pari: [g,chi] = znchar(Mod(111,232))
 

Basic properties

Modulus: \(232\)
Conductor: \(116\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(14\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{116}(111,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: odd
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 232.r

\(\chi_{232}(7,\cdot)\) \(\chi_{232}(23,\cdot)\) \(\chi_{232}(103,\cdot)\) \(\chi_{232}(111,\cdot)\) \(\chi_{232}(199,\cdot)\) \(\chi_{232}(223,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{7})\)
Fixed field: 14.0.5796901408038404767744.1

Values on generators

\((175,117,89)\) → \((-1,1,e\left(\frac{2}{7}\right))\)

Values

\(-1\)\(1\)\(3\)\(5\)\(7\)\(9\)\(11\)\(13\)\(15\)\(17\)\(19\)\(21\)
\(-1\)\(1\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{2}{7}\right)\)\(e\left(\frac{13}{14}\right)\)\(e\left(\frac{6}{7}\right)\)\(e\left(\frac{9}{14}\right)\)\(e\left(\frac{1}{7}\right)\)\(e\left(\frac{3}{14}\right)\)\(1\)\(e\left(\frac{1}{14}\right)\)\(e\left(\frac{6}{7}\right)\)
value at e.g. 2

Gauss sum

sage: chi.gauss_sum(a)
 
pari: znchargauss(g,chi,a)
 
\( \tau_{ a }( \chi_{ 232 }(111,·) )\;\) at \(\;a = \) e.g. 2
\(\displaystyle \tau_{2}(\chi_{232}(111,\cdot)) = \sum_{r\in \Z/232\Z} \chi_{232}(111,r) e\left(\frac{r}{116}\right) = 2.9428346148+21.3386907853i \)

Jacobi sum

sage: chi.jacobi_sum(n)
 
\( J(\chi_{ 232 }(111,·),\chi_{ 232 }(n,·)) \;\) for \( \; n = \) e.g. 1
\( \displaystyle J(\chi_{232}(111,\cdot),\chi_{232}(1,\cdot)) = \sum_{r\in \Z/232\Z} \chi_{232}(111,r) \chi_{232}(1,1-r) = 0 \)

Kloosterman sum

sage: chi.kloosterman_sum(a,b)
 
\(K(a,b,\chi_{ 232 }(111,·)) \;\) at \(\; a,b = \) e.g. 1,2
\( \displaystyle K(1,2,\chi_{232}(111,·)) = \sum_{r \in \Z/232\Z} \chi_{232}(111,r) e\left(\frac{1 r + 2 r^{-1}}{232}\right) = -0.0 \)