Properties

Label 2312.bg
Modulus $2312$
Conductor $2312$
Order $136$
Real no
Primitive yes
Minimal yes
Parity odd

Related objects

Downloads

Learn more

Show commands: Pari/GP / SageMath
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(2312, base_ring=CyclotomicField(136)) M = H._module chi = DirichletCharacter(H, M([68,68,7])) chi.galois_orbit()
 
Copy content pari:[g,chi] = znchar(Mod(19,2312)) order = charorder(g,chi) [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(2312\)
Conductor: \(2312\)
Copy content sage:chi.conductor()
 
Copy content pari:znconreyconductor(g,chi)
 
Order: \(136\)
Copy content sage:chi.multiplicative_order()
 
Copy content pari:charorder(g,chi)
 
Real: no
Primitive: yes
Copy content sage:chi.is_primitive()
 
Copy content pari:#znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: odd
Copy content sage:chi.is_odd()
 
Copy content pari:zncharisodd(g,chi)
 

Related number fields

Field of values: $\Q(\zeta_{136})$
Fixed field: Number field defined by a degree 136 polynomial (not computed)

First 31 of 64 characters in Galois orbit

Character \(-1\) \(1\) \(3\) \(5\) \(7\) \(9\) \(11\) \(13\) \(15\) \(19\) \(21\) \(23\)
\(\chi_{2312}(19,\cdot)\) \(-1\) \(1\) \(e\left(\frac{7}{136}\right)\) \(e\left(\frac{39}{136}\right)\) \(e\left(\frac{65}{136}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{25}{136}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{133}{136}\right)\)
\(\chi_{2312}(43,\cdot)\) \(-1\) \(1\) \(e\left(\frac{113}{136}\right)\) \(e\left(\frac{105}{136}\right)\) \(e\left(\frac{39}{136}\right)\) \(e\left(\frac{45}{68}\right)\) \(e\left(\frac{15}{136}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{107}{136}\right)\)
\(\chi_{2312}(59,\cdot)\) \(-1\) \(1\) \(e\left(\frac{117}{136}\right)\) \(e\left(\frac{69}{136}\right)\) \(e\left(\frac{115}{136}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{107}{136}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{47}{136}\right)\)
\(\chi_{2312}(83,\cdot)\) \(-1\) \(1\) \(e\left(\frac{59}{136}\right)\) \(e\left(\frac{115}{136}\right)\) \(e\left(\frac{101}{136}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{133}{136}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{33}{136}\right)\)
\(\chi_{2312}(195,\cdot)\) \(-1\) \(1\) \(e\left(\frac{77}{136}\right)\) \(e\left(\frac{21}{136}\right)\) \(e\left(\frac{35}{136}\right)\) \(e\left(\frac{9}{68}\right)\) \(e\left(\frac{3}{136}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{49}{68}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{103}{136}\right)\)
\(\chi_{2312}(219,\cdot)\) \(-1\) \(1\) \(e\left(\frac{83}{136}\right)\) \(e\left(\frac{35}{136}\right)\) \(e\left(\frac{13}{136}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{5}{136}\right)\) \(e\left(\frac{2}{17}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{81}{136}\right)\)
\(\chi_{2312}(291,\cdot)\) \(-1\) \(1\) \(e\left(\frac{95}{136}\right)\) \(e\left(\frac{63}{136}\right)\) \(e\left(\frac{105}{136}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{9}{136}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{11}{68}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{37}{136}\right)\)
\(\chi_{2312}(315,\cdot)\) \(-1\) \(1\) \(e\left(\frac{57}{136}\right)\) \(e\left(\frac{65}{136}\right)\) \(e\left(\frac{63}{136}\right)\) \(e\left(\frac{57}{68}\right)\) \(e\left(\frac{87}{136}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{61}{68}\right)\) \(e\left(\frac{59}{68}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{131}{136}\right)\)
\(\chi_{2312}(331,\cdot)\) \(-1\) \(1\) \(e\left(\frac{37}{136}\right)\) \(e\left(\frac{109}{136}\right)\) \(e\left(\frac{91}{136}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{35}{136}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{5}{68}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{23}{136}\right)\)
\(\chi_{2312}(355,\cdot)\) \(-1\) \(1\) \(e\left(\frac{107}{136}\right)\) \(e\left(\frac{91}{136}\right)\) \(e\left(\frac{61}{136}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{13}{136}\right)\) \(e\left(\frac{12}{17}\right)\) \(e\left(\frac{31}{68}\right)\) \(e\left(\frac{1}{68}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{129}{136}\right)\)
\(\chi_{2312}(427,\cdot)\) \(-1\) \(1\) \(e\left(\frac{71}{136}\right)\) \(e\left(\frac{7}{136}\right)\) \(e\left(\frac{57}{136}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{1}{136}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{21}{68}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{125}{136}\right)\)
\(\chi_{2312}(451,\cdot)\) \(-1\) \(1\) \(e\left(\frac{97}{136}\right)\) \(e\left(\frac{113}{136}\right)\) \(e\left(\frac{7}{136}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{55}{136}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{37}{68}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{75}{136}\right)\)
\(\chi_{2312}(467,\cdot)\) \(-1\) \(1\) \(e\left(\frac{133}{136}\right)\) \(e\left(\frac{61}{136}\right)\) \(e\left(\frac{11}{136}\right)\) \(e\left(\frac{65}{68}\right)\) \(e\left(\frac{67}{136}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{79}{136}\right)\)
\(\chi_{2312}(491,\cdot)\) \(-1\) \(1\) \(e\left(\frac{131}{136}\right)\) \(e\left(\frac{11}{136}\right)\) \(e\left(\frac{109}{136}\right)\) \(e\left(\frac{63}{68}\right)\) \(e\left(\frac{21}{136}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{3}{68}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{13}{17}\right)\) \(e\left(\frac{41}{136}\right)\)
\(\chi_{2312}(563,\cdot)\) \(-1\) \(1\) \(e\left(\frac{47}{136}\right)\) \(e\left(\frac{87}{136}\right)\) \(e\left(\frac{9}{136}\right)\) \(e\left(\frac{47}{68}\right)\) \(e\left(\frac{129}{136}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{57}{68}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{77}{136}\right)\)
\(\chi_{2312}(587,\cdot)\) \(-1\) \(1\) \(e\left(\frac{1}{136}\right)\) \(e\left(\frac{25}{136}\right)\) \(e\left(\frac{87}{136}\right)\) \(e\left(\frac{1}{68}\right)\) \(e\left(\frac{23}{136}\right)\) \(e\left(\frac{16}{17}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{7}{68}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{19}{136}\right)\)
\(\chi_{2312}(603,\cdot)\) \(-1\) \(1\) \(e\left(\frac{93}{136}\right)\) \(e\left(\frac{13}{136}\right)\) \(e\left(\frac{67}{136}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{99}{136}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{39}{68}\right)\) \(e\left(\frac{3}{17}\right)\) \(e\left(\frac{135}{136}\right)\)
\(\chi_{2312}(627,\cdot)\) \(-1\) \(1\) \(e\left(\frac{19}{136}\right)\) \(e\left(\frac{67}{136}\right)\) \(e\left(\frac{21}{136}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{29}{136}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{65}{68}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{89}{136}\right)\)
\(\chi_{2312}(699,\cdot)\) \(-1\) \(1\) \(e\left(\frac{23}{136}\right)\) \(e\left(\frac{31}{136}\right)\) \(e\left(\frac{97}{136}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{121}{136}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{29}{136}\right)\)
\(\chi_{2312}(723,\cdot)\) \(-1\) \(1\) \(e\left(\frac{41}{136}\right)\) \(e\left(\frac{73}{136}\right)\) \(e\left(\frac{31}{136}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{127}{136}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{57}{68}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{99}{136}\right)\)
\(\chi_{2312}(739,\cdot)\) \(-1\) \(1\) \(e\left(\frac{53}{136}\right)\) \(e\left(\frac{101}{136}\right)\) \(e\left(\frac{123}{136}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{131}{136}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{9}{68}\right)\) \(e\left(\frac{31}{68}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{55}{136}\right)\)
\(\chi_{2312}(763,\cdot)\) \(-1\) \(1\) \(e\left(\frac{43}{136}\right)\) \(e\left(\frac{123}{136}\right)\) \(e\left(\frac{69}{136}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{37}{136}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{1}{136}\right)\)
\(\chi_{2312}(835,\cdot)\) \(-1\) \(1\) \(e\left(\frac{135}{136}\right)\) \(e\left(\frac{111}{136}\right)\) \(e\left(\frac{49}{136}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{113}{136}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{61}{68}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{117}{136}\right)\)
\(\chi_{2312}(859,\cdot)\) \(-1\) \(1\) \(e\left(\frac{81}{136}\right)\) \(e\left(\frac{121}{136}\right)\) \(e\left(\frac{111}{136}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{95}{136}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{43}{136}\right)\)
\(\chi_{2312}(875,\cdot)\) \(-1\) \(1\) \(e\left(\frac{13}{136}\right)\) \(e\left(\frac{53}{136}\right)\) \(e\left(\frac{43}{136}\right)\) \(e\left(\frac{13}{68}\right)\) \(e\left(\frac{27}{136}\right)\) \(e\left(\frac{4}{17}\right)\) \(e\left(\frac{33}{68}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{7}{17}\right)\) \(e\left(\frac{111}{136}\right)\)
\(\chi_{2312}(899,\cdot)\) \(-1\) \(1\) \(e\left(\frac{67}{136}\right)\) \(e\left(\frac{43}{136}\right)\) \(e\left(\frac{117}{136}\right)\) \(e\left(\frac{67}{68}\right)\) \(e\left(\frac{45}{136}\right)\) \(e\left(\frac{1}{17}\right)\) \(e\left(\frac{55}{68}\right)\) \(e\left(\frac{61}{68}\right)\) \(e\left(\frac{6}{17}\right)\) \(e\left(\frac{49}{136}\right)\)
\(\chi_{2312}(971,\cdot)\) \(-1\) \(1\) \(e\left(\frac{111}{136}\right)\) \(e\left(\frac{55}{136}\right)\) \(e\left(\frac{1}{136}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{105}{136}\right)\) \(e\left(\frac{8}{17}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{29}{68}\right)\) \(e\left(\frac{14}{17}\right)\) \(e\left(\frac{69}{136}\right)\)
\(\chi_{2312}(995,\cdot)\) \(-1\) \(1\) \(e\left(\frac{121}{136}\right)\) \(e\left(\frac{33}{136}\right)\) \(e\left(\frac{55}{136}\right)\) \(e\left(\frac{53}{68}\right)\) \(e\left(\frac{63}{136}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{9}{68}\right)\) \(e\left(\frac{31}{68}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{123}{136}\right)\)
\(\chi_{2312}(1011,\cdot)\) \(-1\) \(1\) \(e\left(\frac{109}{136}\right)\) \(e\left(\frac{5}{136}\right)\) \(e\left(\frac{99}{136}\right)\) \(e\left(\frac{41}{68}\right)\) \(e\left(\frac{59}{136}\right)\) \(e\left(\frac{10}{17}\right)\) \(e\left(\frac{57}{68}\right)\) \(e\left(\frac{15}{68}\right)\) \(e\left(\frac{9}{17}\right)\) \(e\left(\frac{31}{136}\right)\)
\(\chi_{2312}(1035,\cdot)\) \(-1\) \(1\) \(e\left(\frac{91}{136}\right)\) \(e\left(\frac{99}{136}\right)\) \(e\left(\frac{29}{136}\right)\) \(e\left(\frac{23}{68}\right)\) \(e\left(\frac{53}{136}\right)\) \(e\left(\frac{11}{17}\right)\) \(e\left(\frac{27}{68}\right)\) \(e\left(\frac{25}{68}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{97}{136}\right)\)
\(\chi_{2312}(1107,\cdot)\) \(-1\) \(1\) \(e\left(\frac{87}{136}\right)\) \(e\left(\frac{135}{136}\right)\) \(e\left(\frac{89}{136}\right)\) \(e\left(\frac{19}{68}\right)\) \(e\left(\frac{97}{136}\right)\) \(e\left(\frac{15}{17}\right)\) \(e\left(\frac{43}{68}\right)\) \(e\left(\frac{65}{68}\right)\) \(e\left(\frac{5}{17}\right)\) \(e\left(\frac{21}{136}\right)\)