sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2312, base_ring=CyclotomicField(4))
M = H._module
chi = DirichletCharacter(H, M([2,2,1]))
pari:[g,chi] = znchar(Mod(251,2312))
\(\chi_{2312}(251,\cdot)\)
\(\chi_{2312}(1483,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1735,1157,1737)\) → \((-1,-1,i)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(5\) | \(7\) | \(9\) | \(11\) | \(13\) | \(15\) | \(19\) | \(21\) | \(23\) |
\( \chi_{ 2312 }(251, a) \) |
\(-1\) | \(1\) | \(i\) | \(-i\) | \(i\) | \(-1\) | \(-i\) | \(-1\) | \(1\) | \(-1\) | \(-1\) | \(i\) |
sage:chi.jacobi_sum(n)