Properties

Label 231.i
Modulus $231$
Conductor $7$
Order $3$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(231, base_ring=CyclotomicField(6))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,4,0]))
 
sage: chi.galois_orbit()
 
pari: [g,chi] = znchar(Mod(67,231))
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Basic properties

Modulus: \(231\)
Conductor: \(7\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(3\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from 7.c
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Related number fields

Field of values: \(\Q(\sqrt{-3}) \)
Fixed field: \(\Q(\zeta_{7})^+\)

Characters in Galois orbit

Character \(-1\) \(1\) \(2\) \(4\) \(5\) \(8\) \(10\) \(13\) \(16\) \(17\) \(19\) \(20\)
\(\chi_{231}(67,\cdot)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(1\)
\(\chi_{231}(100,\cdot)\) \(1\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(e\left(\frac{1}{3}\right)\) \(1\) \(e\left(\frac{2}{3}\right)\) \(e\left(\frac{1}{3}\right)\) \(e\left(\frac{2}{3}\right)\) \(1\)