Properties

Label 2304.143
Modulus $2304$
Conductor $192$
Order $16$
Real no
Primitive no
Minimal no
Parity even

Related objects

Learn more about

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(2304)
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([8,1,8]))
 
pari: [g,chi] = znchar(Mod(143,2304))
 

Basic properties

Modulus: \(2304\)
Conductor: \(192\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{192}(59,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2304.be

\(\chi_{2304}(143,\cdot)\) \(\chi_{2304}(431,\cdot)\) \(\chi_{2304}(719,\cdot)\) \(\chi_{2304}(1007,\cdot)\) \(\chi_{2304}(1295,\cdot)\) \(\chi_{2304}(1583,\cdot)\) \(\chi_{2304}(1871,\cdot)\) \(\chi_{2304}(2159,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Values on generators

\((1279,2053,1793)\) → \((-1,e\left(\frac{1}{16}\right),-1)\)

Values

\(-1\)\(1\)\(5\)\(7\)\(11\)\(13\)\(17\)\(19\)\(23\)\(25\)\(29\)\(31\)
\(1\)\(1\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{5}{16}\right)\)\(e\left(\frac{15}{16}\right)\)\(i\)\(e\left(\frac{15}{16}\right)\)\(e\left(\frac{7}{8}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{3}{16}\right)\)\(1\)
value at e.g. 2

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: 16.16.3965881151245791007623610368.1