sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2280, base_ring=CyclotomicField(18))
M = H._module
chi = DirichletCharacter(H, M([0,9,9,9,14]))
pari:[g,chi] = znchar(Mod(1469,2280))
Modulus: | \(2280\) | |
Conductor: | \(2280\) |
sage:chi.conductor()
pari:znconreyconductor(g,chi)
|
Order: | \(18\) |
sage:chi.multiplicative_order()
pari:charorder(g,chi)
|
Real: | no |
Primitive: | yes |
sage:chi.is_primitive()
pari:#znconreyconductor(g,chi)==1
|
Minimal: | yes |
Parity: | odd |
sage:chi.is_odd()
pari:zncharisodd(g,chi)
|
\(\chi_{2280}(149,\cdot)\)
\(\chi_{2280}(389,\cdot)\)
\(\chi_{2280}(1469,\cdot)\)
\(\chi_{2280}(1829,\cdot)\)
\(\chi_{2280}(2069,\cdot)\)
\(\chi_{2280}(2189,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1711,1141,761,457,1921)\) → \((1,-1,-1,-1,e\left(\frac{7}{9}\right))\)
\(a\) |
\(-1\) | \(1\) | \(7\) | \(11\) | \(13\) | \(17\) | \(23\) | \(29\) | \(31\) | \(37\) | \(41\) | \(43\) |
\( \chi_{ 2280 }(1469, a) \) |
\(-1\) | \(1\) | \(e\left(\frac{1}{6}\right)\) | \(e\left(\frac{1}{3}\right)\) | \(e\left(\frac{8}{9}\right)\) | \(e\left(\frac{7}{9}\right)\) | \(e\left(\frac{5}{9}\right)\) | \(e\left(\frac{2}{9}\right)\) | \(e\left(\frac{2}{3}\right)\) | \(1\) | \(e\left(\frac{11}{18}\right)\) | \(e\left(\frac{4}{9}\right)\) |
sage:chi.jacobi_sum(n)