![Copy content]() sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(225, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([10,51]))
        sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(225, base_ring=CyclotomicField(60))
M = H._module
chi = DirichletCharacter(H, M([10,51]))
         
     
    
    
        ![Copy content]() pari:[g,chi] = znchar(Mod(47,225))
        pari:[g,chi] = znchar(Mod(47,225))
         
     
    
  
   | Modulus: | \(225\) |  | 
   | Conductor: | \(225\) | 
        ![Copy content]() sage:chi.conductor()   
        ![Copy content]() pari:znconreyconductor(g,chi)   | 
   | Order: | \(60\) | 
        ![Copy content]() sage:chi.multiplicative_order()   
        ![Copy content]() pari:charorder(g,chi)   | 
   | Real: | no | 
   | Primitive: | yes | 
        ![Copy content]() sage:chi.is_primitive()   
        ![Copy content]() pari:#znconreyconductor(g,chi)==1   | 
     | Minimal: | yes | 
       | Parity: | even | 
        ![Copy content]() sage:chi.is_odd()   
        ![Copy content]() pari:zncharisodd(g,chi)   | 
   
  \(\chi_{225}(2,\cdot)\)
  \(\chi_{225}(23,\cdot)\)
  \(\chi_{225}(38,\cdot)\)
  \(\chi_{225}(47,\cdot)\)
  \(\chi_{225}(77,\cdot)\)
  \(\chi_{225}(83,\cdot)\)
  \(\chi_{225}(92,\cdot)\)
  \(\chi_{225}(113,\cdot)\)
  \(\chi_{225}(122,\cdot)\)
  \(\chi_{225}(128,\cdot)\)
  \(\chi_{225}(137,\cdot)\)
  \(\chi_{225}(158,\cdot)\)
  \(\chi_{225}(167,\cdot)\)
  \(\chi_{225}(173,\cdot)\)
  \(\chi_{225}(203,\cdot)\)
  \(\chi_{225}(212,\cdot)\)
    
        ![Copy content]() sage:chi.galois_orbit()
        sage:chi.galois_orbit()
         
     
    
    
        ![Copy content]() pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
        pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
         
     
    
 
\((101,127)\) → \((e\left(\frac{1}{6}\right),e\left(\frac{17}{20}\right))\)
  
    
      
        | \(a\) | \(-1\) | \(1\) | \(2\) | \(4\) | \(7\) | \(8\) | \(11\) | \(13\) | \(14\) | \(16\) | \(17\) | \(19\) | 
    
    
      | \( \chi_{ 225 }(47, a) \) | \(1\) | \(1\) | \(e\left(\frac{1}{60}\right)\) | \(e\left(\frac{1}{30}\right)\) | \(e\left(\frac{11}{12}\right)\) | \(e\left(\frac{1}{20}\right)\) | \(e\left(\frac{23}{30}\right)\) | \(e\left(\frac{29}{60}\right)\) | \(e\left(\frac{14}{15}\right)\) | \(e\left(\frac{1}{15}\right)\) | \(e\left(\frac{11}{20}\right)\) | \(e\left(\frac{3}{10}\right)\) | 
  
 
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.gauss_sum(a)
        sage:chi.gauss_sum(a)
         
     
    
    
        ![Copy content]() pari:znchargauss(g,chi,a)
        pari:znchargauss(g,chi,a)
         
     
    
    
        ![Copy content]() sage:chi.jacobi_sum(n)
        sage:chi.jacobi_sum(n)
         
     
    
    
        ![Copy content]() sage:chi.kloosterman_sum(a,b)
        sage:chi.kloosterman_sum(a,b)