Properties

Label 2240.377
Modulus $2240$
Conductor $1120$
Order $8$
Real no
Primitive no
Minimal no
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(2240, base_ring=CyclotomicField(8))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,5,2,4]))
 
pari: [g,chi] = znchar(Mod(377,2240))
 

Basic properties

Modulus: \(2240\)
Conductor: \(1120\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(8\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{1120}(1077,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: no
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2240.ci

\(\chi_{2240}(377,\cdot)\) \(\chi_{2240}(713,\cdot)\) \(\chi_{2240}(1497,\cdot)\) \(\chi_{2240}(1833,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{8})\)
Fixed field: 8.8.80564191232000000.4

Values on generators

\((1471,1541,897,1921)\) → \((1,e\left(\frac{5}{8}\right),i,-1)\)

Values

\(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\(1\)\(1\)\(e\left(\frac{1}{8}\right)\)\(i\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{5}{8}\right)\)\(i\)\(e\left(\frac{3}{8}\right)\)\(-1\)\(e\left(\frac{3}{8}\right)\)\(e\left(\frac{3}{8}\right)\)\(-1\)
value at e.g. 2