sage:from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(2240, base_ring=CyclotomicField(2))
M = H._module
chi = DirichletCharacter(H, M([1,0,1,1]))
pari:[g,chi] = znchar(Mod(2239,2240))
\(\chi_{2240}(2239,\cdot)\)
sage:chi.galois_orbit()
pari:order = charorder(g,chi)
[ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
\((1471,1541,897,1921)\) → \((-1,1,-1,-1)\)
\(a\) |
\(-1\) | \(1\) | \(3\) | \(9\) | \(11\) | \(13\) | \(17\) | \(19\) | \(23\) | \(27\) | \(29\) | \(31\) |
\( \chi_{ 2240 }(2239, a) \) |
\(1\) | \(1\) | \(-1\) | \(1\) | \(-1\) | \(1\) | \(1\) | \(1\) | \(1\) | \(-1\) | \(1\) | \(1\) |
sage:chi.jacobi_sum(n)