Properties

Label 2240.141
Modulus $2240$
Conductor $64$
Order $16$
Real no
Primitive no
Minimal yes
Parity even

Related objects

Learn more

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter
 
sage: H = DirichletGroup(2240, base_ring=CyclotomicField(16))
 
sage: M = H._module
 
sage: chi = DirichletCharacter(H, M([0,15,0,0]))
 
pari: [g,chi] = znchar(Mod(141,2240))
 

Basic properties

Modulus: \(2240\)
Conductor: \(64\)
sage: chi.conductor()
 
pari: znconreyconductor(g,chi)
 
Order: \(16\)
sage: chi.multiplicative_order()
 
pari: charorder(g,chi)
 
Real: no
Primitive: no, induced from \(\chi_{64}(13,\cdot)\)
sage: chi.is_primitive()
 
pari: #znconreyconductor(g,chi)==1
 
Minimal: yes
Parity: even
sage: chi.is_odd()
 
pari: zncharisodd(g,chi)
 

Galois orbit 2240.dx

\(\chi_{2240}(141,\cdot)\) \(\chi_{2240}(421,\cdot)\) \(\chi_{2240}(701,\cdot)\) \(\chi_{2240}(981,\cdot)\) \(\chi_{2240}(1261,\cdot)\) \(\chi_{2240}(1541,\cdot)\) \(\chi_{2240}(1821,\cdot)\) \(\chi_{2240}(2101,\cdot)\)

sage: chi.galois_orbit()
 
pari: order = charorder(g,chi)
 
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
 

Related number fields

Field of values: \(\Q(\zeta_{16})\)
Fixed field: \(\Q(\zeta_{64})^+\)

Values on generators

\((1471,1541,897,1921)\) → \((1,e\left(\frac{15}{16}\right),1,1)\)

Values

\(-1\)\(1\)\(3\)\(9\)\(11\)\(13\)\(17\)\(19\)\(23\)\(27\)\(29\)\(31\)
\(1\)\(1\)\(e\left(\frac{13}{16}\right)\)\(e\left(\frac{5}{8}\right)\)\(e\left(\frac{11}{16}\right)\)\(e\left(\frac{1}{16}\right)\)\(i\)\(e\left(\frac{9}{16}\right)\)\(e\left(\frac{1}{8}\right)\)\(e\left(\frac{7}{16}\right)\)\(e\left(\frac{5}{16}\right)\)\(-1\)
value at e.g. 2