# Properties

 Label 2240.117 Modulus $2240$ Conductor $2240$ Order $48$ Real no Primitive yes Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(2240, base_ring=CyclotomicField(48))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([0,15,12,40]))

pari: [g,chi] = znchar(Mod(117,2240))

## Basic properties

 Modulus: $$2240$$ Conductor: $$2240$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$48$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: yes sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Galois orbit 2240.fl

sage: chi.galois_orbit()

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Related number fields

 Field of values: $$\Q(\zeta_{48})$$ Fixed field: Number field defined by a degree 48 polynomial

## Values on generators

$$(1471,1541,897,1921)$$ → $$(1,e\left(\frac{5}{16}\right),i,e\left(\frac{5}{6}\right))$$

## Values

 $$-1$$ $$1$$ $$3$$ $$9$$ $$11$$ $$13$$ $$17$$ $$19$$ $$23$$ $$27$$ $$29$$ $$31$$ $$1$$ $$1$$ $$e\left(\frac{25}{48}\right)$$ $$e\left(\frac{1}{24}\right)$$ $$e\left(\frac{43}{48}\right)$$ $$e\left(\frac{15}{16}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{41}{48}\right)$$ $$e\left(\frac{19}{24}\right)$$ $$e\left(\frac{9}{16}\right)$$ $$e\left(\frac{15}{16}\right)$$ $$e\left(\frac{1}{3}\right)$$
 value at e.g. 2