# Properties

 Label 2205.ee Modulus $2205$ Conductor $735$ Order $84$ Real no Primitive no Minimal yes Parity even

# Related objects

Show commands for: Pari/GP / SageMath
sage: from sage.modular.dirichlet import DirichletCharacter

sage: H = DirichletGroup(2205, base_ring=CyclotomicField(84))

sage: M = H._module

sage: chi = DirichletCharacter(H, M([42,63,20]))

sage: chi.galois_orbit()

pari: [g,chi] = znchar(Mod(53,2205))

pari: order = charorder(g,chi)

pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]

## Basic properties

 Modulus: $$2205$$ Conductor: $$735$$ sage: chi.conductor()  pari: znconreyconductor(g,chi) Order: $$84$$ sage: chi.multiplicative_order()  pari: charorder(g,chi) Real: no Primitive: no, induced from 735.bt sage: chi.is_primitive()  pari: #znconreyconductor(g,chi)==1 Minimal: yes Parity: even sage: chi.is_odd()  pari: zncharisodd(g,chi)

## Related number fields

 Field of values: $\Q(\zeta_{84})$ Fixed field: Number field defined by a degree 84 polynomial

## Characters in Galois orbit

Character $$-1$$ $$1$$ $$2$$ $$4$$ $$8$$ $$11$$ $$13$$ $$16$$ $$17$$ $$19$$ $$22$$ $$23$$
$$\chi_{2205}(53,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{37}{84}\right)$$ $$e\left(\frac{37}{42}\right)$$ $$e\left(\frac{9}{28}\right)$$ $$e\left(\frac{1}{42}\right)$$ $$e\left(\frac{3}{28}\right)$$ $$e\left(\frac{16}{21}\right)$$ $$e\left(\frac{17}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{67}{84}\right)$$
$$\chi_{2205}(107,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{83}{84}\right)$$ $$e\left(\frac{41}{42}\right)$$ $$e\left(\frac{27}{28}\right)$$ $$e\left(\frac{17}{42}\right)$$ $$e\left(\frac{9}{28}\right)$$ $$e\left(\frac{20}{21}\right)$$ $$e\left(\frac{79}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{11}{28}\right)$$ $$e\left(\frac{5}{84}\right)$$
$$\chi_{2205}(233,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{5}{84}\right)$$ $$e\left(\frac{5}{42}\right)$$ $$e\left(\frac{5}{28}\right)$$ $$e\left(\frac{41}{42}\right)$$ $$e\left(\frac{11}{28}\right)$$ $$e\left(\frac{5}{21}\right)$$ $$e\left(\frac{25}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{1}{28}\right)$$ $$e\left(\frac{59}{84}\right)$$
$$\chi_{2205}(242,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{31}{84}\right)$$ $$e\left(\frac{31}{42}\right)$$ $$e\left(\frac{3}{28}\right)$$ $$e\left(\frac{19}{42}\right)$$ $$e\left(\frac{1}{28}\right)$$ $$e\left(\frac{10}{21}\right)$$ $$e\left(\frac{71}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{13}{84}\right)$$
$$\chi_{2205}(368,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{13}{84}\right)$$ $$e\left(\frac{13}{42}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{31}{42}\right)$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{13}{21}\right)$$ $$e\left(\frac{65}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{25}{28}\right)$$ $$e\left(\frac{19}{84}\right)$$
$$\chi_{2205}(548,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{41}{84}\right)$$ $$e\left(\frac{41}{42}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{17}{42}\right)$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{20}{21}\right)$$ $$e\left(\frac{37}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{25}{28}\right)$$ $$e\left(\frac{47}{84}\right)$$
$$\chi_{2205}(683,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{73}{84}\right)$$ $$e\left(\frac{31}{42}\right)$$ $$e\left(\frac{17}{28}\right)$$ $$e\left(\frac{19}{42}\right)$$ $$e\left(\frac{15}{28}\right)$$ $$e\left(\frac{10}{21}\right)$$ $$e\left(\frac{29}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{9}{28}\right)$$ $$e\left(\frac{55}{84}\right)$$
$$\chi_{2205}(737,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{71}{84}\right)$$ $$e\left(\frac{29}{42}\right)$$ $$e\left(\frac{15}{28}\right)$$ $$e\left(\frac{11}{42}\right)$$ $$e\left(\frac{5}{28}\right)$$ $$e\left(\frac{8}{21}\right)$$ $$e\left(\frac{19}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{3}{28}\right)$$ $$e\left(\frac{65}{84}\right)$$
$$\chi_{2205}(872,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{67}{84}\right)$$ $$e\left(\frac{25}{42}\right)$$ $$e\left(\frac{11}{28}\right)$$ $$e\left(\frac{37}{42}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{4}{21}\right)$$ $$e\left(\frac{83}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$e\left(\frac{1}{84}\right)$$
$$\chi_{2205}(1052,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{23}{84}\right)$$ $$e\left(\frac{23}{42}\right)$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{29}{42}\right)$$ $$e\left(\frac{17}{28}\right)$$ $$e\left(\frac{2}{21}\right)$$ $$e\left(\frac{31}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{27}{28}\right)$$ $$e\left(\frac{53}{84}\right)$$
$$\chi_{2205}(1178,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{29}{84}\right)$$ $$e\left(\frac{29}{42}\right)$$ $$e\left(\frac{1}{28}\right)$$ $$e\left(\frac{11}{42}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$e\left(\frac{8}{21}\right)$$ $$e\left(\frac{61}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{17}{28}\right)$$ $$e\left(\frac{23}{84}\right)$$
$$\chi_{2205}(1187,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{43}{84}\right)$$ $$e\left(\frac{1}{42}\right)$$ $$e\left(\frac{15}{28}\right)$$ $$e\left(\frac{25}{42}\right)$$ $$e\left(\frac{5}{28}\right)$$ $$e\left(\frac{1}{21}\right)$$ $$e\left(\frac{47}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{3}{28}\right)$$ $$e\left(\frac{37}{84}\right)$$
$$\chi_{2205}(1313,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{25}{84}\right)$$ $$e\left(\frac{25}{42}\right)$$ $$e\left(\frac{25}{28}\right)$$ $$e\left(\frac{37}{42}\right)$$ $$e\left(\frac{27}{28}\right)$$ $$e\left(\frac{4}{21}\right)$$ $$e\left(\frac{41}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{5}{28}\right)$$ $$e\left(\frac{43}{84}\right)$$
$$\chi_{2205}(1367,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{59}{84}\right)$$ $$e\left(\frac{17}{42}\right)$$ $$e\left(\frac{3}{28}\right)$$ $$e\left(\frac{5}{42}\right)$$ $$e\left(\frac{1}{28}\right)$$ $$e\left(\frac{17}{21}\right)$$ $$e\left(\frac{43}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{41}{84}\right)$$
$$\chi_{2205}(1493,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{65}{84}\right)$$ $$e\left(\frac{23}{42}\right)$$ $$e\left(\frac{9}{28}\right)$$ $$e\left(\frac{29}{42}\right)$$ $$e\left(\frac{3}{28}\right)$$ $$e\left(\frac{2}{21}\right)$$ $$e\left(\frac{73}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{11}{84}\right)$$
$$\chi_{2205}(1502,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{19}{84}\right)$$ $$e\left(\frac{19}{42}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$e\left(\frac{13}{42}\right)$$ $$e\left(\frac{25}{28}\right)$$ $$e\left(\frac{19}{21}\right)$$ $$e\left(\frac{11}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{15}{28}\right)$$ $$e\left(\frac{73}{84}\right)$$
$$\chi_{2205}(1628,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{1}{84}\right)$$ $$e\left(\frac{1}{42}\right)$$ $$e\left(\frac{1}{28}\right)$$ $$e\left(\frac{25}{42}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$e\left(\frac{1}{21}\right)$$ $$e\left(\frac{5}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{17}{28}\right)$$ $$e\left(\frac{79}{84}\right)$$
$$\chi_{2205}(1682,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{11}{84}\right)$$ $$e\left(\frac{11}{42}\right)$$ $$e\left(\frac{11}{28}\right)$$ $$e\left(\frac{23}{42}\right)$$ $$e\left(\frac{13}{28}\right)$$ $$e\left(\frac{11}{21}\right)$$ $$e\left(\frac{55}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$e\left(\frac{29}{84}\right)$$
$$\chi_{2205}(1808,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{17}{84}\right)$$ $$e\left(\frac{17}{42}\right)$$ $$e\left(\frac{17}{28}\right)$$ $$e\left(\frac{5}{42}\right)$$ $$e\left(\frac{15}{28}\right)$$ $$e\left(\frac{17}{21}\right)$$ $$e\left(\frac{1}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{9}{28}\right)$$ $$e\left(\frac{83}{84}\right)$$
$$\chi_{2205}(1817,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{79}{84}\right)$$ $$e\left(\frac{37}{42}\right)$$ $$e\left(\frac{23}{28}\right)$$ $$e\left(\frac{1}{42}\right)$$ $$e\left(\frac{17}{28}\right)$$ $$e\left(\frac{16}{21}\right)$$ $$e\left(\frac{59}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{27}{28}\right)$$ $$e\left(\frac{25}{84}\right)$$
$$\chi_{2205}(1943,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{61}{84}\right)$$ $$e\left(\frac{19}{42}\right)$$ $$e\left(\frac{5}{28}\right)$$ $$e\left(\frac{13}{42}\right)$$ $$e\left(\frac{11}{28}\right)$$ $$e\left(\frac{19}{21}\right)$$ $$e\left(\frac{53}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{1}{28}\right)$$ $$e\left(\frac{31}{84}\right)$$
$$\chi_{2205}(1997,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{47}{84}\right)$$ $$e\left(\frac{5}{42}\right)$$ $$e\left(\frac{19}{28}\right)$$ $$e\left(\frac{41}{42}\right)$$ $$e\left(\frac{25}{28}\right)$$ $$e\left(\frac{5}{21}\right)$$ $$e\left(\frac{67}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{15}{28}\right)$$ $$e\left(\frac{17}{84}\right)$$
$$\chi_{2205}(2123,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{53}{84}\right)$$ $$e\left(\frac{11}{42}\right)$$ $$e\left(\frac{25}{28}\right)$$ $$e\left(\frac{23}{42}\right)$$ $$e\left(\frac{27}{28}\right)$$ $$e\left(\frac{11}{21}\right)$$ $$e\left(\frac{13}{84}\right)$$ $$e\left(\frac{1}{6}\right)$$ $$e\left(\frac{5}{28}\right)$$ $$e\left(\frac{71}{84}\right)$$
$$\chi_{2205}(2132,\cdot)$$ $$1$$ $$1$$ $$e\left(\frac{55}{84}\right)$$ $$e\left(\frac{13}{42}\right)$$ $$e\left(\frac{27}{28}\right)$$ $$e\left(\frac{31}{42}\right)$$ $$e\left(\frac{9}{28}\right)$$ $$e\left(\frac{13}{21}\right)$$ $$e\left(\frac{23}{84}\right)$$ $$e\left(\frac{5}{6}\right)$$ $$e\left(\frac{11}{28}\right)$$ $$e\left(\frac{61}{84}\right)$$