sage: from sage.modular.dirichlet import DirichletCharacter
sage: H = DirichletGroup(2205, base_ring=CyclotomicField(42))
sage: M = H._module
sage: chi = DirichletCharacter(H, M([7,21,18]))
sage: chi.galois_orbit()
pari: [g,chi] = znchar(Mod(29,2205))
pari: order = charorder(g,chi)
pari: [ charpow(g,chi, k % order) | k <-[1..order-1], gcd(k,order)==1 ]
Basic properties
Modulus: | \(2205\) | |
Conductor: | \(2205\) | sage: chi.conductor()
pari: znconreyconductor(g,chi)
|
Order: | \(42\) | sage: chi.multiplicative_order()
pari: charorder(g,chi)
|
Real: | no | |
Primitive: | yes | sage: chi.is_primitive()
pari: #znconreyconductor(g,chi)==1
|
Minimal: | yes | |
Parity: | odd | sage: chi.is_odd()
pari: zncharisodd(g,chi)
|
Related number fields
Field of values: | \(\Q(\zeta_{21})\) |
Fixed field: | 42.0.3837673466217340106928126375453933444571381454724458960545008349464231740607366905207587636470794677734375.1 |
Characters in Galois orbit
Character | \(-1\) | \(1\) | \(2\) | \(4\) | \(8\) | \(11\) | \(13\) | \(16\) | \(17\) | \(19\) | \(22\) | \(23\) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
\(\chi_{2205}(29,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(1\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{13}{21}\right)\) |
\(\chi_{2205}(239,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(1\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{2}{21}\right)\) |
\(\chi_{2205}(554,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(1\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{17}{21}\right)\) |
\(\chi_{2205}(659,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(1\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{1}{21}\right)\) |
\(\chi_{2205}(869,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{1}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(1\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{11}{21}\right)\) |
\(\chi_{2205}(974,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{23}{42}\right)\) | \(e\left(\frac{11}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(1\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{16}{21}\right)\) |
\(\chi_{2205}(1184,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{13}{21}\right)\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(1\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{5}{21}\right)\) |
\(\chi_{2205}(1289,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{5}{21}\right)\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(e\left(\frac{31}{42}\right)\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(1\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{10}{21}\right)\) |
\(\chi_{2205}(1499,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{10}{21}\right)\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(e\left(\frac{41}{42}\right)\) | \(e\left(\frac{13}{42}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{5}{7}\right)\) | \(1\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{20}{21}\right)\) |
\(\chi_{2205}(1604,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{2}{21}\right)\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(e\left(\frac{25}{42}\right)\) | \(e\left(\frac{11}{42}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{1}{7}\right)\) | \(1\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{4}{21}\right)\) |
\(\chi_{2205}(1919,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{20}{21}\right)\) | \(e\left(\frac{19}{21}\right)\) | \(e\left(\frac{6}{7}\right)\) | \(e\left(\frac{19}{42}\right)\) | \(e\left(\frac{5}{42}\right)\) | \(e\left(\frac{17}{21}\right)\) | \(e\left(\frac{3}{7}\right)\) | \(1\) | \(e\left(\frac{17}{42}\right)\) | \(e\left(\frac{19}{21}\right)\) |
\(\chi_{2205}(2129,\cdot)\) | \(-1\) | \(1\) | \(e\left(\frac{4}{21}\right)\) | \(e\left(\frac{8}{21}\right)\) | \(e\left(\frac{4}{7}\right)\) | \(e\left(\frac{29}{42}\right)\) | \(e\left(\frac{1}{42}\right)\) | \(e\left(\frac{16}{21}\right)\) | \(e\left(\frac{2}{7}\right)\) | \(1\) | \(e\left(\frac{37}{42}\right)\) | \(e\left(\frac{8}{21}\right)\) |